According to the following formula, the answer is 2,300 g or 2.3 kg:
Volume (m)/Mass (m) Equals Density (p) (V)
Here, the density is 1.15 g/mL, allowing the formula described above to result in a mass of 2.00 L:
p=m/V
1.15 g/mL is equal to x g/2.00 L or x g/2,000 mL.
2,000 mL of x g = 1.15 g of g/mL
2.3 kg or 2,300 g for x g.
<h3>How many grams of glucose are in a 1000ml bag of glucose 5?</h3>
Its active ingredient is glucose. This medication includes 50 g of glucose per 1000 ml (equivalent to 55 g glucose monohydrate). 50 mg of glucose is present in 1 ml (equivalent to 55 mg glucose monohydrate). A transparent, nearly colourless solution of glucose in water is what is used in glucose intravenous infusion (BP) at 5% weight-to-volume.
Patients who are dehydrated or who have low blood sugar levels get glucose intravenously. Other medications may be diluted with glucose intravenous infusion before being injected into the body. Other diseases and disorders not covered above may also be treated with it.
learn more about glucose intravenous infusion refer
brainly.com/question/7057736
#SPJ4
Answer:
The runner's speed at the following times would remain 8.64 m/s.
Explanation:
Acceleration definition: Acceleration is rate of change in velocity of an object with respect to time.
In this case, after 3.6 seconds the acceleration is zero, it means that the velocity of the runner after 3.6 seconds is not changing and it will remain constant for the remainder of the race. Now, we have to find the velocity of the runner that he had after 3.6 seconds and that would be the runner's speed for the remainder of the race. For this we use first equation of motion.
First equation of motion: Vf = Vi + a×t
Vf stands for final velocity
Vi stands for initial velocity
a stands for acceleration
t stands for time
In the question, it is mentioned that the runner starts from rest so its initial velocity (Vi) will be 0 m/s.
The acceleration (a) is given as 2.4 m/s²
The time (t) is given as 3.6 s
Now put the values of Vi, a and t in first equation of motion
Vf = Vi + a×t
Vf = 0 + 2.4×3.6
Vf = 2.4×3.6
Vf = 8.64 m/s
So,the runner's speed at the following times would remain 8.64 m/s.
Answer:
145.8m
Explanation:
The toss distance is given by:

"A is correct answer." The effective length of the tube is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument. "Hope this helps!" "Have a great day!" "Thank you for posting your question!"