The correct answer for the question that is being presented above is this one:
Given that:
delta Tb = Kbm Kb H2O = 0.52 degrees C/m
<span>delta Tf = Kfm Kf H2O = 1.86 degrees C/m
</span>
We need to know the formula for Molality.
molality = mol solute / kg solvent
<span>We are given the amount of solute in grams
Since amount of solute is given in moles, we have to convert 25 g NaCl to moles. Divide by molar mass. </span>
<span>25 g NaCl / 58.5 g/mol = 0.427 mol </span>
<span>Then, use the formula for molality. </span>
<span>molality = mol solute / kg solvent </span>
<span>= 0.427 / 1 </span>
<span>= 0.427 m </span>
<span>Use now the formula to get the boiling point.</span>
<span>delta Tb = Kbm </span>
<span>= (0.52)(0.427) </span>
<span>= 0.22C </span>
Line 1: straight horizontal line
Line 2: straight line at a slope
Line 3: exponential growth curve
Line 4: the topmost curve (the one that initially increases but then starts levels out)
Answer:
2 Na + 1 Cl2 -> 2 NaCl
Explanation:
The answer is really simple, because if you have 1 nonmetal element that has a subscript of 2, you need to multiply the product and the first reactant by 2 to balance it.
Answer:
a) distance is 4+7+1+8=20 blocks
b) displacement is 10 blocks
Explanation:
find displacement: x and y
x axis displacement = 4-1 = 3 blocks
y axis displacement = -7+8= 1 block
displacement = the square root of 3^2 + 1^2
= 9+1 = 10 blocks.
You can find the angle of displacement with respect to the initial position using trig identities, if you wish.