Answer:
P2 = 19.2atm
Explanation:
Initial pressure (P1) = 16atm
Initial temperature (T1) = 340K
Final temperature (T2) = 408K
Final pressure (P2) = ?
This question involves the use of pressure law
Pressure law states that the pressure of a fixed mass of gas is directly proportional to it's temperature provided that volume is kept constant.
Mathematically,
P = kT, k = P / T
Therefore,
P1 / T1 = P2 / T2 = P3 / T3 = ......=Pn / Tn
P1 / T1 = P2 / T2
We need to solve for P2
P2 = (P1 × T2) / T1
Now we can plug in the values and solve for P2
P2 = (16 × 408) / 340
P2 = 6528 / 340
P2 = 19.2atm
The final pressure (P2) of the gas is 19.2atm
“Water” is the best thermal insulator.
Option: B
<u>Explanation</u>:
“Thermal insulators” are the materials which do not allow heat to transfer. “Water” is the substance which does not transfer heat. Hence, the “water” is the best “thermal insulator”. Water is the bad conductor of thermal heat. Water has “low thermal conductivity” than other substances, so this acts as an insulator as long as it is not traveled from one place to another. Heat is transferred when a “hot object collides” with “the cold objects”. The “thermal conductivity” of “water” is 0.6 W/m K.
Based on our knowledge of strong and weak acids, we can confirm that the Ka value for acetic acid will be relatively low since it is a weak acid.
Acids can be strong or weak. This is determined by its <u><em>tendency to break apart into ions or stay together to form molecules.</em></u> Although somewhat counter-intuitive, strong acids are those that are most likely to break apart and therefore contain a <em><u>high number of </u></em><em><u>ions </u></em><em><u>within their solutions</u></em>.
Weak acids, on the other hand, are those that<em><u> tend to stay together in the form of </u></em><em><u>molecules </u></em><em><u>and therefore possess very </u></em><em><u>low ion counts </u></em><em><u>in their solutions.</u></em> The acid dissociation constant, Kₐ, is used to measure whether an acid is weak or strong and how much so. In the case of Acetic acid, the ka measurement will offer a low value, indicating a weak acid.
To learn more visit:
brainly.com/question/4131966?referrer=searchResults
Answer:
In 4 years the carbon monoxide level reach 7.8 parts per million.
Explanation:
The average daily level of carbon monoxide in the air is given by :
parts per million..[1]
The population of the region after t years is modeled by the formula :
...[2]
If level of carbon monoxide level reach 7.8 parts per million in t years.
Using [1] to calculate value of x.
c(x)= 7.8 parts per million
c(x) = 0.5x + 2 parts per million
7.8 parts per million = (0.5x + 2 ) parts per million
Solving for x , we get ;
x = 11.6
Using [2] to calculate value of t.:
x(t) = 11.6

Solving for 't' we get ;
t = 4 years
In 4 years the carbon monoxide level reach 7.8 parts per million.