The statement "An atom with high ionization energy will form a positive ion more easily than an atom with low ionization energy" is false.
In this context , we will define ionization energy as the minimum energy required to remove a valence electron from a neutral atom in it's gaseous state. In a sense the ionization energy is a measure the amount of 'difficulty' of making something an ion. A high ionization energy means that it takes a lot of energy to remove a valence electron from that atom. A low ionization energy means that it is easy to remove a valence electron from the atom. It is known that group 1 elements generally have a low ionization energy. On the other hand, it is harder for noble gasses and group 7 atoms to loose electrons because they have higher ionization energy.
To form a positive ion, you have to remove an electron. When an electron is removed from an atom, there ion formed has more positive charges than negative charges in it, making it net positive. We have established that atoms with low ionization energy loose elections much more easily. We have also established that atoms with high ionization energy do not loose electrons easily. From this we can gather that the statement is false. An atom with high ionization energy will not form a positive ion more easily that an atom with low ionization energy.
Answer:
Its final temperature is 25.8 °C
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation (ΔT=Tfinal-Tinitial)
When a body transmits heat there is another that receives it. This is the principle of the calorimeter. Then the heat released by the compound will be equal to the heat obtained by the calorimeter.
In this case, you know:
- c= 3.55

- m=1.20 kg= 1200 g (1 kg=1000 g)
- Tfinal= ?
- Tinitial= 22.5 °C
Replacing:

Solving:

3.3=Tfinal - 22.5 C
3.3 + 22.5=Tfinal
Tfinal= 25.8 °C
<u><em>Its final temperature is 25.8 °C</em></u>
Answer:
They will create an ionic bond.
Explanation:
The atom with the one valence electron will lose its one, because it's a metal and metals will lose electrons to become stable. The nonmetal (with 7 valence electrons) will gain that electron, therefore creating a stable octet for the nonmetal, making the compound stable.
Answer:
If you are meaning O2^2- ion, well, don’t forget that ions have a charge, that has to be specified when referring to them. It is a polyatomic ion just because it consists of more than one atom, irrespective of the fact that these atoms are of the same element or not. It was given that name because at the early times chemistry was founded as a science, it was found that with respect to other oxygenated substances, peroxides contained more oxygen than expected: Latin prefix per- gives the terms it is attached to the meaning of being increased, enhanced, and similar.
Explanation: