Answer:Counter,
0.799,
1.921
Explanation:
Given data




Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger
Equating Heat exchange
![m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]](https://tex.z-dn.net/?f=m_hc_%7Bph%7D%5Cleft%20%5B%20T_%7Bh_i%7D-T_%7Bh_o%7D%5Cright%20%5D%3Dm_cc_%7Bpc%7D%5Cleft%20%5B%20T_%7Bc_o%7D-T_%7Bc_i%7D%5Cright%20%5D)
=
we can see that heat capacity of hot fluid is minimum
Also from energy balance

=


NTU=1.921





A chemical engineer can clearly see from this kind of test if a substance stays in a system and builds up or if it just passes through.
<h3>What is a chemical engineer?</h3>
- Processes for manufacturing chemicals are created and designed by chemical engineers.
- To solve issues involving the manufacture or usage of chemicals, fuel, medications, food, and many other goods, chemical engineers use the concepts of chemistry, biology, physics, and math.
- A wide range of sectors, including petrochemicals and energy in general, polymers, sophisticated materials, microelectronics, pharmaceuticals, biotechnology, foods, paper, dyes, and fertilizers, have a significant demand for chemical engineers.
- Chemical engineering is undoubtedly difficult because it requires a lot of physics and math, as well as a significant number of exams at the degree level.
To learn more about chemical engineer, refer to:
brainly.com/question/23542721
#SPJ4
Answer:
slenderness ratio = 147.8
buckling load = 13.62 kips
Explanation:
Given data:
outside diameter is 3.50 inc
wall thickness 0.30 inc
length of column is 14 ft
E = 10,000 ksi
moment of inertia 

Area 


r = 1.136 in
slenderness ratio 

buckling load 

