Answer:
We can solve this by the method of which i solved your one question earlier
so again here molar mass of C12H25NaSO4 is 288.372 and number of moles for 11900 gm of C12H25NaSO4 will be = 11900/288.372
which is almost = 41.26 moles
so to get one mole of C12H25NaSO4 we need one mole of C12H26O
so for 41.26 moles of C12H25NaSO4 it will require 41 26 moles of C12H26O
so the mass of C12H26O = 41.26× its molar mass
C12H26O = 41.26×186.34
= 7688.38 gm!!
so the conclusion is If you need 11900 g of C12H25NaSO4 (Sodium Lauryl Sulfate) you need C12H26O 7688.38 gm !!
Again i d k wether it's right or wrong but i tried my best hope it helped you!!
<u><em>Answer:</em></u>
- The correct option is C.
- Formation of a precipitate
<u><em>Explanation:</em></u>
During a chemical reaction, new substances are formed known as a products, mostly reaction occur and their product is obtained as precipitates.
<u><em>Example</em></u>
Arylidene-2-thiobarbituric acid is obtained as precipitates when aldehyde and thiobarbituric acid react to each other.
melting of a substance
It is just indication of physical changes, like melting of ice, composition remained same as before.
boiling of a substance
It is just indication of physical changes, like boiling of water into vapors, composition remained same as before.
freezing of a substance
It is just indication of physical changes, like freezing of water into ice, composition remained same as before
Answer:
Write this in a word and skeleton equation:
Solid silver chloride and an aqueous solution of nitric acid are produced when a solution of silver nitrate is reacted with a solution of hydrochloric acid.
Explanation:
Three complete orders on each side of the m=0 order can be produced in addition to the m = 0 order.
The ruling separation is
d=1 / (470mm −1) = 2.1×10⁻³ mm
Diffraction lines occur at angles θ such that dsinθ=mλ, where λ is the wavelength and m is an integer.
Notice that for a given order, the line associated with a long wavelength is produced at a greater angle than the line associated with a shorter wavelength.
We take λ to be the longest wavelength in the visible spectrum (538nm) and find the greatest integer value of m such that θ is less than 90°.
That is, find the greatest integer value of m for which mλ<d.
since d / λ = 538×10⁻⁹m / 2.1×10 −6 m ≈ 3
that value is m=3.
There are three complete orders on each side of the m=0 order.
The second and third orders overlap.
Learn more about diffraction here : brainly.com/question/16749356
#SPJ4