X: 1S²2S²2P⁶
Y: 1S²2S²2P⁶3S²3P⁶
The statement which is most likely correct about the two elements is
They will not react because both have a complete outermost shell and are stable.
<u><em>Explanation</em></u>
The P orbital can hold a maximum of 6 electrons,therefore the 2P orbital for x and 3P orbital for Y which are outermost subshell are fully filled .
This make element Y and x stable since they cannot react either by gaining or losing electrons.
Answer:If a liquid is heated the particles are given more energy and move faster and faster expanding the liquid. The most energetic particles at the surface escape from the surface of the liquid as a vapour as it gets warmer. Liquids evaporate faster as they heat up and more particles have enough energy to break away.
Explanation:
The Everglades and the Louisiana wetan are the same
For a general reaction,

General expression for rate law will be:
![r=k[A]^{a}[B]^{b}](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D)
Here, r is rate of the reaction, k is rate constant, a is order with respect to reactant A and b is order with respect to reactant B.
The reaction is first order with respect to
, second order with respect to
and zero order with respect to
.
According to above information, expression for rate law will be:
![r=k[BrO_{3}^{-}]^{1}[Br^{-}]^{2}[H^{+}]^{0}](https://tex.z-dn.net/?f=r%3Dk%5BBrO_%7B3%7D%5E%7B-%7D%5D%5E%7B1%7D%5BBr%5E%7B-%7D%5D%5E%7B2%7D%5BH%5E%7B%2B%7D%5D%5E%7B0%7D)
Or,
...... (1)
- When concentration of
get doubled, rate of the reaction becomes,
...... (2)
Dividing (2) by (1)
![\frac{r^{'}}{r}=\frac{2k[BrO_{3}^{-}][Br^{-}]^{2}}{k[BrO_{3}^{-}][Br^{-}]^{2}}=2](https://tex.z-dn.net/?f=%5Cfrac%7Br%5E%7B%27%7D%7D%7Br%7D%3D%5Cfrac%7B2k%5BBrO_%7B3%7D%5E%7B-%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D%7D%7Bk%5BBrO_%7B3%7D%5E%7B-%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D%7D%3D2)
Or,

Thus, rate of the reaction also get doubled.
- When the concentration of
is halved, the rate of reaction becomes
Or,
...... (3)
Dividing (3) by (1)
![\frac{r^{"}}{r}=\frac{1/4k[BrO_{3}^{-}][Br^{-}]^{2}}{k[BrO_{3}^{-}][Br^{-}]^{2}}=\frac{1}{4}](https://tex.z-dn.net/?f=%5Cfrac%7Br%5E%7B%22%7D%7D%7Br%7D%3D%5Cfrac%7B1%2F4k%5BBrO_%7B3%7D%5E%7B-%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D%7D%7Bk%5BBrO_%7B3%7D%5E%7B-%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D%7D%3D%5Cfrac%7B1%7D%7B4%7D)
Or,

Thus, rate of reaction becomes 1/4th of the initial rate.
- When the concentration of
is tripled:
Since, the rate expression does not have concentration of
, it is independent of it. Thus, any change in the concentration will not affect the rate of reaction and rate of reaction remains the same as in equation (1).