The answer is C.
The vast difference in electronegativity of the oxygen and hydrogen in water, the O-H bond is polar.
External fertilization in animals usually occurs in water or in damp areas in a process called spawning.
Answer:
70mol
Explanation:
The equation of the reaction is given as:
2C₂H₂ + 5O₂ → 4CO₂ + 2H₂O
Given parameters:
Number of moles of acetylene = 35.0mol
Number of moles of oxygen in the tank = 84.0mol
Unknown:
Number of moles of CO₂ produced = 35.0mol
Solution:
From the information given about the reaction, we know that the reactant that limits this combustion process is acetylene. Oxygen is given in excess and we don't know the number of moles of this gas that was used up. We know for sure that all the moles of acetylene provided was used to furnish the burning procedure.
To determine the number of moles of CO₂ produced, we use the stoichiometric relationship between the known acetylene and the CO₂ produced from the balanced chemical equation:
From the equation:
2 moles of acetylene produced 4 moles of CO₂
∴ 35.0 mol of acetylene would produced:
= 70mol
Answer: B.
The rate of the nuclear reaction increases, but the rate of the chemical reaction remains the same
Explanation:
Answer: 72 grams of
are needed to completely burn 19.7 g 
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to molecular mass and contains avogadro's number
of particles.
To calculate the number of moles, we use the equation:

Putting in the values we get:


According to stoichiometry:
1 mole of
requires 5 moles of oxygen
0.45 moles of
require=
moles of oxygen
Mass of 
72 grams of
are needed to completely burn 19.7 g 