Answer:
Explanation:
Group one elements are alkali metals. All alkali metal have one valance electron. They loses their one valance electron and from cation with charge of +1.
Charges on group one.
Hydrogen = +1
Lithium = +1
Sodium = +1
Potassium = +1
Rubidium = +1
Cesium = +1
Francium = +1
Group two elements are alkaline earth metals. All alkaline earth metal have two valance electron. They loses their two valance electron and from cation with charge of +2.
Charges on group two.
Beryllium = +2
Magnesium = +2
Calcium = +2
Strontium = +2
Barium= +2
Radium = +2
Group 13 elements are boron family. All elements have three valance electrons. They loses their three valance electron and from cation with charge of +3.
Charges on group 13.
Boron = +3
Aluminium = +3
Gallium = +3
Indium = +3
Thallium= +3
Group 13 elements are also shows +1 charge by losing one valance electron.
The SI unit for the amount of substance present is the mole.
The mole is defined as the amount of substance that has the same amount of particles as there are atoms in 12 grams of carbon-12. Mathematically, the moles of a substance may be computed using:
moles present = mass of substance / molecular mass of substance
<h2>Answer : </h2>
<h3>D. HETEROGENEOUS MIXTURE </h3>
HOPE IT HELP ❤️
Acid A, assuming the two acids have the same pH. The M stands for molarity which is how concentrated a substance is (basically the higher the molarity the more concentrated the acid is). However, pH refers to how acidic a substance is. If the two acids have different levels of acidity, the answer may be different.
Answer:
2022 L
Explanation:
Ideal gas laws will work for gas in the balloon
The general gas law is for a gas at two arbitrary states 1 and 2 is given by
(P₁ V₁)/T₁ = (P₂ V₂)/T₂
P₁ = 1.17 atm
V₁ = 200.0 L
T₁ = 20°C = 293.15 K
P₂ = 63 mmHg = 0.0829 atm
V₂ = ?
T₂ = 210 K
(1.17 × 200)/293.15 = (0.0829 × V₂)/210
V₂ = (210 × 1.17 × 200)/(293.15 × 0.0829)
V₂ = 2022 L