Answer:
<em>At equilibrium, the rate of the forward, and the reverse reactions are equal.</em>
Explanation:
In an equilibrium chemical reaction, the rate of forward reaction, is equal to the rate of reverse reaction. Note that the reactions does not cease at equilibrium, but rather, the reactants are converted to product, at the same rate at which the product is also being converted into the reactants in the reaction. When chemical equilibrium is reached, a careful calculation of the value of equilibrium constant is approximately equal to 1.
NB: If the value of equilibrium constant is far far greater than 1, then the reaction will favors more of the forward reaction, and if far far less than 1, the reaction will favor more of the reverse reaction.
H H
I I
H - C - C - H
l l
H H
A Carbon can only form 4 bonds and a Hydrogen can only form 1 bond.
<span>Consider two solutions: solution X has a pH of 4; solution Y has a pH of 7. From this information, we can reasonably conclude that </span>the concentration of hydrogen ions (H⁺) or hydronium ions (H₃O⁺) in solution X is thousand times as great as the concentration of hydrogen ions or hydronium ions in solution Y.
Solution X: c(H⁺) = 10∧-pH = 10⁻⁴ mol/L = 0,0001 mol/L.
Solution Y: c(H⁺) = 10⁻⁷ mol/L = 0,0000001 mol/L.
0,0001 mol/L / 0,0000001 mol/L = 1000.
Answer: E. none of these
Explanation: because the f-block element is n-2