Answer:
owee ik tht had to hurt are uu okay now :(
Explanation:
Answer:
2Na+F2 yields 2NaF is balanced.
Explanation:
There are 2 sodium and 2 fluorine in both reactants and product: In 2NaF the 2 is distributed because it is in the beginning of the compound.
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L
Answer:
3.052 × 10^24 particles
Explanation:
To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)
The mass of Li2O given in this question is as follows: 151grams.
To convert this mass value to moles, we use;
moles = mass/molar mass
Molar mass of Li2O = 6.9(2) + 16
= 13.8 + 16
= 29.8g/mol
Mole = 151/29.8g
mole = 5.07moles
number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23
= 30.52 × 10^23
= 3.052 × 10^24 particles.
Answer:
3 (NH4)2SO4(aq) + 2 Al(NO3)3(aq) → 6 NH4NO3(aq) + Al2(SO4)3(aq)
Explanation:
In solubility rules, all ammonium and nitrates ions are solubles and all sulfates are soluble except the sulfates that are produced with Ca²⁺, Sr²⁺, Ba²⁺, Ag⁺ and Pb²⁺. That means the NH4NO3 and the Al2(SO4)3 produced are both <em>soluble and no precipitate is predicted. </em>
The reaction is:
<h3>3 (NH4)2SO4(aq) + 2 Al(NO3)3(aq) → 6 NH4NO3(aq) + Al2(SO4)3(aq)</h3>