Answer:
Cu(s) in Cu(NO₃)₂(aq)
Explanation:
The standard reduction potential (E°) is the energy necessary to reduce the atom in a redox reaction. When an atom reduces it gains electrons from other than oxides. As higher is E°, easily it will reduce. The substance that reduces is at the cathode of a cell, where the electrons go to, and the other that oxides are at the anode of the cell.
The standard reduction potentials from Al(s) and Cu(s) are, respectively, -1.66V and +0.15V, so the half-cell of Cu(s) in Cu(NO₃)₂(aq) is the cathode.
Answer:
This is due to more hydrogen bonding in ethylene glycol than it is in isopropyl alcohol
Explanation:
The boiling point of isopropyl alcohol is 82.4 °C it contains only a single OH group, hence intermolecular hydrogen bonding is solely responsible for it's boiling point, whereas Ethylene glycol (CH2OHCH2OH) contains 2-OH group and both intermolecular and intramolecular hydrogen bonding are responsible for the higher boiling point of ethylene glycol at 198 °C.
Chlorophyll captures the sun's energy and is used as energy to complete the photosynthesis process
<span>conductor because it conducts the electrons</span><span />
Of heating. Or when the lake is exposed to boil because of the temperature.