To determine whether a compound is polar or nonpolar you have to take into account:
1) formation of dipoles due to the difference in electronegativities of the atoms
2) shape of the molecule to conclude whether there is a net dipole momentum.
You already, likely, know that the electronegativities of H and O are significatively different, being O more electronegative thatn H. So, you can conclude easilty that the electrons are atracted more by O than by H, thus creating two dipoles H→O
Regarding the shape, it may appear that the molecule is symmetrical, which would lead to the cancellation of the two dipoles. But that is not the true. The H2O2 is not symmetrical.
The lewis structure just show this shape
** **
H - O - O - H
** **
which is what may induce to think that the molecule is symmetrical, leading to the misconception that it is nonpolar.
But in a three dimensional arrangement you could see that the hydrogens are placed in non symmetrical positions, which leads to the formation of a net dipole momentum, and thus to a polar molecule.
The fact that H2O2 is a polar compound is the reason why it can be mixed with water and the H2O2 that you buy in the pharmacy is normally a solution in water.
So, the hydrogen peroxide is polar because the hydrogens are not placed symmetrically in the molecule, which result in a net dipole momentum.
Answer:
For an object to move, there must be a force. A force is a push or pull that causes an object to move, change direction, change speed, or stop. Without a force, an object that is moving will continue to move and an object at rest will remain at rest.
Explanation:
Explanation:
Let us assume that the given data is as follows.
V = 3.10 L, T =
= (19 + 273)K = 292 K
P = 40 torr (1 atm = 760 torr)
So, P = 
= 0.053 atm
n = ?
According to the ideal gas equation, PV = nRT.
Putting the given values into the above equation to calculate the value of n as follows.
PV = nRT

0.1643 = 
n = 
It is known that molar mass of ethanol is 46 g/mol. Hence, calculate its mass as follows.
No. of moles =
mass =
g
= 0.315 g
Thus, we can conclude that the mass of liquid ethanol is 0.315 g.
Answer:
a resource that cannot be replenished in a short period of time.
Explanation:
Nonrenewable energy sources take thousands to millions of years to replenish. hence the "nonrenewable".
The balanced equation for the above reaction is as follows;
Na₂SO₄ + BaCl₂ --> BaSO₄ + 2NaCl
Na₂SO₄ reacts with BaCl₂ in the molar ratio 1:1
Number of Na₂SO₄ moles - 10.0 g / 142.1 g/mol = 0.0704 mol
Number of BaCl₂ moles - 10.0 g / 208.2 g/mol = 0.0480 mol
this means that 0.0480 mol of each reactant is used up, BaCl₂ is the limiting reactant and Na₂SO₄ has been provided in excess.
stoichiometry of BaCl₂ to BaSO₄ is 1:1
number of BaSO₄ moles formed - 0.0480 mol
Mass of BaSO₄ - 0.0480 mol x 233.2 g/mol = 11.2 g
theoretical yield is 11.2 g but the actual yield is 12.0 g
the actual product maybe more than the theoretical yield of the product as the measured mass of the actual yield might contain impurities.
percent yield - 12.0 g/ 11.2 g x 100% = 107%
this is due to impurities present in the product or product could be wet.