The formula of mechanical advantage in this situation is:
MA = Input Force ÷ Output Force
The input force is the 30N applied to a screwdriver while the output force is the 75N force to the lid.
So,
MA = 30N/75N
MA = 0.40
Hence the mechanical advantage of the screwdriver is 0.40.
Answer:
8.60 *
atoms N2
Explanation:
We want to convert grams to moles and then moles to atoms.
First, we convert grams of nitrogen gas (which is N2) to moles. To do so, we need the molar mass of N2, which is just 14.01 * 2 = 28.02 g.
40 g N2 *
= 1.43 mol N2
Now, we need to convert moles to atoms by using Avogadro's number, which is
:
1.43 mol N2 *
= 8.60 *
atoms N2
Thus, the answer is 8.60 *
atoms N2.
Answer:
The dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
Explanation:

The rate of the reaction ;
![R=k[C_4H_6]^x](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5Ex)
As given in the question , that graph of time verses
was linear but plots of
or
was curved.
Generally:
Graph of time verses
for zero order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with positive slope.
So, the dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
Answer:
70.8 mmHg
Explanation:
To find partial pressure of carbon dioxide we first find the mole fraction of carbon dioxide
n (carbon dioxide) = 5/44.01 g/mol = 0.11361 mol
n (Helium) = 3.75 g/4 g/mol = 0.9375 mol
The partial pressure of carbon dioxide will be the mole fraction of carbon dioxide multiplied by the total pressure
Partial pressure = 0.11361g/(0.11361g + 0.9375 g)* 655 mmHg
= 70.8 mmHg
Answer:
Current understanding
It is now known that quasars are distant but extremely luminous objects, so any light which reaches the Earth is redshifted due to the metric expansion of space. ... Light and other radiation cannot escape from within the event horizon of a black hole.