The molar mass of gas = 238.29 g/mol
<h3>Further explanation</h3>
Given
mass = 81.5 g
P=1.75 atm
V=4.92 L
T=307 K
Required
molar mass
Solution
The gas equation can be written


So the equation becomes :

Input the value :

Answer:
Four times the original amount if only one orange was used
Explanation:
We can assume that the oranges all have equal voltages. Connecting them in series will have an increasing effect on the voltage delivered. In our case, this will produce 4 times the voltage of the circuit when only one orange is used.
Whenever simple cells are connected in series, the voltages of the individual cells are added up to form the voltage of the whole circuit.
Let us assume that the voltage of each of the oranges is approximately 0.9 volts. The Voltage produced when the 4 oranges are joined in series is 0.9 + 0.9 + 0.9 + 0.9 = 3.6 volts
A neutron has neither a negative or positive charge, it’s neutral
When a molecule can occupy the same active site as the substrate, a situation called enzymes can result.
The volume of the gas at STP = 35.01 L
<h3>Further explanation</h3>
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure).
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
V=17.4 L
T = 23 + 273 = 296 K
P = 2.18 atm

The volume of the gas occupy at STP :
