<em>Quantities that determine the kinetic energy of a body are its </em><em>mass and velocity </em>
Answer: <em>mass and velocity </em>
Explanation:
The kinetic energy of a body is the energy possessed by an object by virtue of its motion. It is given by the equation

Where m represents mass of the body and v represents its velocity.
Two bodies of equal velocity but different mass the heavier body will have greater kinetic energy. When an object is at rest its velocity is equal to zero. Thus its kinetic energy will be zero. Hence it can be concluded that only moving bodies have kinetic energy.
Stationary objects placed at a height possess potential energy which is the energy by virtue of their position or configuration. The total mechanical energy of a system is the sum of potential and kinetic energy.
<span>It can form four covalent bonds. </span>
Once energy from the Sun gets to Earth, several things can happen to it:
Energy can be scattered or absorbed by aerosols in the atmosphere. Aerosols are dust, soot, sulfates and nitric oxides. When aerosols absorb energy, the atmosphere becomes warmer. When aerosols scatter energy, the atmosphere is cooled.
Short wavelengths are absorbed by ozone in the stratosphere.
Clouds may act to either reflect energy out to space or absorb energy, trapping it in the atmosphere.
The land and water at Earth's surface may act to either reflect energy or absorb it. Light colored surfaces are more likely to reflect sunlight, while dark surfaces typically absorb the energy, warming the planet.
Albedo is the percentage of the Sun's energy that is reflected back by a surface. Light colored surfaces like ice have a high albedo, while dark colored surfaces tend to have a lower albedo. The buildings and pavement in cities have such a low albedo that cities have been called "heat islands" because they absorb so much energy that they warm up.
Answer:
66.26 m/s
Explanation:
Horizontal velocity, Vx = 55.3 m/s
Vertical velocity, Vy = 36.5 m/s
The value of the resultant velocity is given by the vector sum of the two velocities which are acting at 90°.


V = 66.26 m/s
Thus, the velocity of the vehicle is 66.26 m/s along its descent path.
Answer:
The new kinetic energy would be 16 times greater than before.
Explanation:
Kinetic energy is found using this formula:
- KE = 1/2mv²
- where KE = kinetic energy (J), m = mass (kg), and v = velocity (m/s)
We can see that kinetic energy is directly proportional to the square of the velocity, meaning that if the speed was increased by 4 times, then the kinetic energy would get increased by a factor of 16.
The velocity just before the ball hits the ground can be found by the equation:
Let's substitute h = 10 m and h = 40 m into this formula.
We can see that the velocity increases by a factor of 4 (10 m → 40 m).
Therefore, this means that the kinetic energy would also be increased by a factor of (4)² = 16. Thus, the answer is D) The new kinetic energy would be 16 times greater than before.