Heat of vaporization of water will be required as water is already at it's boiling point thus heat required will be 540*10=5400 cal
Explanation:
The experiment is performed at a constant atmospheric pressure. The experiment proceeds by placing an empty flask in a boiling water bath. As the temperature increases, the air inside the flask expands. Afterwards, the gas is cooled in a water bath by maintaining the amount of the air in the flask constant.
Sulfur is the answer according to the 2'8-8 rule
Answer is "sucrose".
Polymer is a large molecule which is made from repeating units. The smallest repeating unit is called as monomer. <span>Polystyrene, nylon and PVC are examples for polymers. But sucrose is a disaccharide which is made from glucose and fructose. Hence, sucrose is not an example of polymer. </span>
Q1)
firstly we need to determine the empirical formula of the compound. empirical formula is the simplest ratio of components in the compound.
percentages of the elements have been given, so lets assume we are calculating for a compound of 100g
C H O
mass 63.13 g 8.830 g 28.03 g
molar mass 12 g/mol 1 g/mol 16 g/mol
number of moles 63.13/12 8.830/1 28.03/16
5.26 8.830 1.75
divide by the smallest number of moles
5.26/1.75 8.830/1.75 1.75/1.75
= 3.01 = 5.04 =1
rounded off to the nearest whole numbers
C - 3
H - 5
O - 1
therefore empirical formula = C₃H₅O
Q2)
we have to next determine the molecular formula of the compound
molecular formula gives the actual composition of elements in the compound.
since we know the empirical formula and molecular mass, we can find how many empirical units are in the molecular formula.
mass of empirical unit = Cx3 + Hx5 + Ox1
= 12 g/mol x 3 + 1g/mol x 5 + 16 g/mol x 1
= 36 + 5 + 16 = 57 g/mol
the molecular mass = 228 g/mol
then number of empirical units in the molecular formula = 228 / 57 = 4
therefore there are 4 empirical units
then the molecular formula = 4 x empirical formula =4 (C₃H₅O)
molecular formula = C₁₂H₂₀O₄