Answer:
.409 N
Explanation:
For this to balance, the moments around the fulcrum must sum to zero.
On the left you have .21 ( is that down? I will assume it is)
Counterclockwise moments :
.21 * 40 + 1.0 * 20
Clockwise moments :
.5 * 20 + F * 45
these moments must equal each other
.21*40 + 1 *20 = .5 * 20 + F * 45
F = .409 N
Answer:
Explanation:
charge, q = 1.6 x 10^-19 C
distance, r = 911 nm = 911 x 10^-9 m
The Coulomb's force is given by


F = 2.78 x 10^-16 N
The force between the electron and the proton is 2.78 x 10^-16 N.
Integrating the velocity equation, we will see that the position equation is:

<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:

To get the position equation we just need to integrate the above equation:


Then:


Replacing that in our integral we get:


Where C is a constant of integration.
Now we remember that 
Then we have:

To find the value of C, we use the fact that f(0) = 0.

C = -1 / 3
Then the position function is:

Integrating the velocity equation, we will see that the position equation is:

To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :

t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).