44.64m
Explanation:
Given parameters:
Mass of the car = 1500kg
Initial velocity = 25m/s
Frictional force = 10500N
Unknown:
Distance moved by the car after brake is applied = ?
Solution:
The frictional force is a force that opposes motion of a body.
To solve this problem, we need to find the acceleration of the car. After this, we apply the appropriate motion equation to solve the problem.
-Frictional force = m x a
the negative sign is because the frictional force is in the opposite direction
m is the mass of the car
a is the acceleration of the car
a = = = -7m/s²
Now using;
V² = U² + 2as
V is the final velocity
U is the initial velocity
a is the acceleration
s is the distance moved
0² = 25² + 2 x 7 x s
0 = 625 - 14s
-625 = -14s
s = 44.64m
learn more:
Velocity problems brainly.com/question/10932946
#learnwithBrainly
Answer:
option C
Explanation:
the ball is moving circular around the pole
Angular momentum of the system is constant
J = I ω
now,
the rope radius is decreasing as it revolving around the pole
angular speed is inversely proportional to radius.
so, the angular speed will increase.
The correct answer is option C
Answer:
ΔR = 9 s
Explanation:
To calculate the propagation of the uncertainty or absolute error, the variation with each parameter must be calculated and the but of the cases must be found, which is done by taking the absolute value
The given expression is R = 2A / B
the uncertainty is ΔR = | | ΔA + | | ΔB
we look for the derivatives
= 9 / B
= 9A ( )
we substitute
ΔR = ΔA + ΔB
the values are
ΔA = 2 s
ΔB = 3 s
ΔR = 2 + 3
ΔR = 1.636 + 7.14
ΔR = 8,776 s
the absolute error must be given with a significant figure
ΔR = 9 s
Answer:
a = 1.41 m/s²
Explanation:
Given that
mass ,m= 41 kg
F₁ = 65 N , θ = 59°
F₂ = 35 N ,θ = 32°
The component of Force F₁
F₁x= F₁cos59° i
F₁x= 65 x cos59° i = 33.47 i
F₁y= - F₁ sin 59° j
F₁y= - 65 x sin 59° j = - 55.71 j
The component of Force F₂
F₂x= F₂ sin 32° i
F₂x= 35 x sin 32° i = 18.54 i
F₂y= F₂ cos 32° j
F₂y= 35 x cos 32° j = 29.68 j
The total force F
F= 33.47 i + 18.54 i - 55.71 j + 29.68 j
F= 52.01 i - 26.03 j
The magnitude of the force F
F=58.16 N
We know that
F= m a
a= Acceleration
m=mass
58.16 = 41 x a
a = 1.41 m/s²
Answer:
<em>1108.464 N of force</em>
Explanation:
diameter of water hose = 70 cm = 0.7 m
radius = 0.7/2 = 0.35 m
volumetric flow rate Q = 420 L/min
1 L = 0.001 m^3
1 min = 60 s
therefore,
Q = 420 L/min = (420 x 0.001)/60 = 0.007 m^3/s
Area A of fire hose = π = 3.142 x = 0.38 m^2
<em>From continuity equation, Q = AV</em>
where V1 is the velocity of the water through the pipe, and A1 is the area of the pipe.
Q = A1V1
0.007 = 0.38V1
V1 = 0.007/0.38 = 0.018 m/s.
Nozzle diameter = 0.75 cm = 0.0075 m
radius = 0.00375
Area = π = 3.142 x = 4.42 x m^2
velocity of water through the nozzle will be
V2 = Q/A2 = 0.007 ÷ (4.42 x ) = 158.37 m/s
From
<em>F = ρQ(v2 - v1)</em>
Where,
F = force exerted
p = density of water = 1000 kg/m^3
F = 1000 x 0.007 x (158.37 - 0.018) = <em>1108.464 N of force</em>