A) <u>Weight = mass × acceleration (due to gravity) </u>
= 60×9.8
= 588 N
<u>B) Potential energy = mass x gravity x change in height
</u>
1,000 = 60.0 x 9.8 x h
h = 1.7 m
<u>C) Kinetic energyF = potential energyI
</u>
KEF = 1/2mv2
PEI = mgh = 1,000 J
1/2mv2 = 1,000
1/2(60.0)v2 = 1,000
v2 = 33.33
v = 5.77 m/s
The independent variable in this problem would be the different types of shower cleaner. The dependent variable would be the shower tiles.
The amplitude of wave-c is 1 meter.
The speed of all of the waves is (12meters/2sec)= 6 m/s.
The period of wave-a is 1/2 second.
Answer:
a) t₁ = 4.76 s, t₂ = 85.2 s
b) v = 209 ft/s
Explanation:
Constant acceleration equations:
x = x₀ + v₀ t + ½ at²
v = at + v₀
where x is final position,
x₀ is initial position,
v₀ is initial velocity,
a is acceleration,
and t is time.
When the engine is on and the sled is accelerating:
x₀ = 0 ft
v₀ = 0 ft/s
a = 44 ft/s²
t = t₁
So:
x = 22 t₁²
v = 44 t₁
When the engine is off and the sled is coasting:
x = 18350 ft
x₀ = 22 t₁²
v₀ = 44 t₁
a = 0 ft/s²
t = t₂
So:
18350 = 22 t₁² + (44 t₁) t₂
Given that t₁ + t₂ = 90:
18350 = 22 t₁² + (44 t₁) (90 − t₁)
Now we can solve for t₁:
18350 = 22 t₁² + 3960 t₁ − 44 t₁²
18350 = 3960 t₁ − 22 t₁²
9175 = 1980 t₁ − 11 t₁²
11 t₁² − 1980 t₁ + 9175 = 0
Using quadratic formula:
t₁ = [ 1980 ± √(1980² - 4(11)(9175)) ] / 22
t₁ = 4.76, 175
Since t₁ can't be greater than 90, t₁ = 4.76 s.
Therefore, t₂ = 85.2 s.
And v = 44 t₁ = 209 ft/s.
I don't know what the exact word is, but I do know that the bigger an objects mass is the more it will attract other objects toward it, mainly smaller objects with less mass. it might be gravity or something around those lines....is it a multiple choice question?