1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cloud [144]
2 years ago
5

At which angle do wires have to be to experience full force? What happens at other angles?

Physics
1 answer:
lisov135 [29]2 years ago
8 0

Answer:

The angle wires have to be placed to experience full force is such that the angle between the direction of current flow and the direction of the magnetic field is 90°

Explanation:

The direction of the force acting on a conductor through which a charge flows  is given by Flemings Left Hand Rule which states that the direction of the force acting on a conductor carrying a current of charge is perpendicular to both the direction in which the current is flowing and the direction of the magnetic field

Therefore, wires carrying flowing charges has to be placed such that the direction of charge (current) flow is perpendicular (at 90°) to an existing magnetic field to experience (maximum) full force

You might be interested in
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
2 years ago
Sarah, whose mass is 40 kg, is on her way to school after a winter storm when she accidentally slips on a patch of ice whose coe
RideAnS [48]

Sarah's acceleration is -0.49 m/s^2

Explanation:

The force of kinetic friction acting on Sarah has a magnitude which is given by:

F_f = \mu mg

where

\mu is the coefficient of kinetic friction

m is Sarah's mass

g is the acceleration of gravity

Moreover, according to Newton's second law of motion, we know that the net force on Sarah is equal to its mass times its acceleration:

F=ma

where a is the acceleration

Since the force of friction is the only force acting on Sarah, we can say that the net force is equal to the force of friction, therefore:

F=-\mu mg = ma

where the negative sign is due to the fact that the force of friction has a direction opposite to the motion of Sarah. Solving for a, we find

a=-\mu g

And substituting the following values:

\mu = 0.05 (coefficient of friction)

g=9.81 m/s^2 (acceleration of gravity)

we find:

a=-(0.05)(9.81)=-0.49 m/s^2

Learn more about acceleration and forces:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

#LearnwithBrainly

4 0
3 years ago
Help<br> help <br> help<br> plssss
Flauer [41]

Answer:

sorry i don't no

i promise i will help you later

now i am also in trouble now

nobody helps me

4 0
2 years ago
The core of the Sun has a temperature of 1.5 × 107 K, while the surface of the Sun has a temperature of 4870 K (which varies ove
ololo11 [35]

Answer:

The Sun and planets are shown to the same scale. The small terrestrial planets and tiny Pluto are in the box---the Earth is the blue dot near the center of the box (montage created by Nick Strobel using NASA images).

Size

The Sun is by far the biggest thing in the solar system. From its angular size of about 0.5° and its distance of almost 150 million kilometers, its diameter is determined to be 1,392,000 kilometers. This is equal to 109 Earth diameters and almost 10 times the size of the largest planet, Jupiter. All of the planets orbit the Sun because of its enormous gravity. It has about 333,000 times the Earth's mass and is over 1,000 times as massive as Jupiter. It has so much mass that it is able to produce its own light. This feature is what distinguishes stars from planets.

Composition

What is the Sun made of? Spectroscopy shows that hydrogen makes up about 94% of the solar material, helium makes up about 6% of the Sun, and all the other elements make up just 0.13% (with oxygen, carbon, and nitrogen the three most abundant ``metals''---they make up 0.11%). In astronomy, any atom heavier than helium is called a ``metal'' atom. The Sun also has traces of neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, and iron. The percentages quoted here are by the relative number of atoms. If you use the percentage by mass, you find that hydrogen makes up 78.5% of the Sun's mass, helium 19.7%, oxygen 0.86%, carbon 0.4%, iron 0.14%, and the other elements are 0.54%.

Explanation:

4 0
3 years ago
A car of mass 600kg is moving at 15m/s. The driver accelerate gently to a final velocity of 30m/s so that a force of force acts
Anvisha [2.4K]

Answer:

Really hope you get it!!

3 0
3 years ago
Read 2 more answers
Other questions:
  • How many miles can you get on one tank of gas if your tank holds 18 gallons and you get 22 miles per
    7·2 answers
  • A concrete piling of 50 kg is suspended from a steel wire of diameter 1.0 mm and length 11.2 m. How much will the wire stretch?
    6·1 answer
  • Explain why electric forces are essential to forming compounds
    12·1 answer
  • two plastic balls with opposite charges are hung by a string close to each other. How will they interact with each other ?
    10·2 answers
  • Considering the various theories, the energy used in forming organic molecules in the primitive atmosphere could have come from
    14·1 answer
  • Your boss asks you to design a room that can be as soundproof as possible and provides you with three samples of material. The o
    11·1 answer
  • What is the drawback to using superconductors?
    11·1 answer
  • Due Tomorrow Hellpp plzzzz
    9·1 answer
  • A woman shouts at a boy who is underwater what happens to the speed of the sound wave as it moves from the air into the water
    12·2 answers
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!