What part of it are you confused about
When you plug in an electrical heater, it turns the electrical energy into radiant energy.<span />
Answer:
87.5 mi/hr
Explanation:
Because a = Δv / Δt (a = vf - vi/ Δt), we need to find the acceleration first to know the change in velocity so we can determine the final velocity.
vf = 60 mi/hr
vi = 0 mi/hr
Δt = 8 secs
a = vf - vi/ Δt
= 60 mi/hr - 0 mi/hr/ 8 secs
= 60 mi/hr / 8 secs
= 7.5 mi/hr^2
Now that we know the acceleration of the car is 7. 5 mi/hr^2, we can substitute it in the acceleration formula to find the final velocity when the initial velocity is 50 mi/hr after 5 secs.
vi = 50 mi/ hr
Δt = 5 secs
a = 7.5 mi/ hr^2
a = vf - vi/ Δt
7.5 = vf - 50 mi/hr / 5 secs
37.5 = vf - 50
87.5 mi/ hr = vf
Answer:

Explanation:
Hello.
In this case, given the formula:

Whereas E is the energy, h the Planck's constant and u the frequency of the photon. Thus, solving for it, we obtain:

Or also:

Best regards.
The statements in accordance with the law of conservation of charge are:
A. The total charge of the reactants and products must be equal
B. The net charge of an isolated system remains constant
Both of these statements follow the law of conservation of charge which states that charge may neither be created nor destroyed, due to which the total charge in an isolated system (one in which charge can not move in or out of) remains constant.