Answer:
18.06 × 10²³ molecules
Explanation:
Add the two amounts of molecules together.
6.02 × 10²³ + 12.04 × 10²³ = 18.06 × 10²³
You will have 18.06 × 10²³ molecules in the vessel when the reaction is complete. This is because of the Law of Conservation of Mass. Mass is neither created nor destroyed in chemical reactions. You will have the exact number of molecules in the reaction vessel as you did in the beginning. The types of molecules may change, but the number will stay the same.
1. Phosphate Group,Pentose sugar, and Nitrogen base
2. Not sure
3.These are found in RNA cytosine, guanine, adenine and uracil.
7.86 is the pOH of water at this temperature of 100 degrees celsius.
Option E is the right answer.
Explanation:
Data given:
Kw = 51.3 x 
pOH = ?
we know that pure water is neutral and will have pH pf 7.
The equation for relation between Kw and H+ and OH- ion is given by:
Kw = [H+] [OH-}
here the concentration of H+ ion and OH- ion is equal
so, [H+]= [OH-]
Putting the values in the equation of Kw
pKw = -log[Kw]
pKw = -log [51.3 x
]
pKw = 12.28
since H+ ion OH ion concentration is equal the pH of water is half i.e. 6.14
Now, pOH is calculated by using the equation:
14 = pOH + pH
14- 6.14 = pOH
pOH = 7.86
Answer:
I like rain. Clouds must be condensing at 100% humidity, the pressure must be low, and the temperature must be above 0 degrees.
Explanation:
Hope this helps!
Answer:
The mass percent of potassium is 39%
Option C is correct
Explanation:
Step 1: Data given
Atomic mass of K = 39.10 g/mol
Atomic mass of H = 1.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Step 2: Calculate molar mass of KHCO3
Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0
Molar mass KHCO3 = 100.12 g/mol
Step 3: Calculate mass percent of potassium (K)
%K = (atomic mass of K / molar mass of KHCO3) * 100%
%K = (39.10 / 100.12) * 100%
%K = 39.05 %
The mass percent of potassium is 39%
Option C is correct