1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
8

If a bicycle travels 1200m, and it takes 300seconds, what is its speed in m/s.

Physics
1 answer:
ch4aika [34]3 years ago
7 0
Answer: 4

Explanation: speed= distance/time
You might be interested in
Which scientific law states the relationship between an object's mass, acceleration, and amount of force acting on it? (3 points
Kisachek [45]

Answer:

4.Newton's second law of motion

4 0
3 years ago
Read 2 more answers
Evaluate ( 64800 ms ) 2 to three significant figures and express the answer in Si units. Express your answer using three signifi
Sergeu [11.5K]

Answer:

42.0×10² second²

Explanation:

Here, time is given in milisecond

(64800 ms)²

= 4199040000 ms²

The SI unit is seconds

1 second = 1000 milisecond

1\ milisecond=\frac{1}{1000}\ second

\\\Rightarrow 1\ milisecond^2=\left(\frac{1}{1000}\right)^2\ second^2

4199040000\ ms^2=4199040000\times \left(\frac{1}{1000}\right)^2\ second^2=4199.04\ second^2

42.0×10² second²

6 0
3 years ago
Heptane and water do not mix, and heptane has a lower density (0.684 g/mL) than water (1.00 g/mL). A graduated cylinder contains
lakkis [162]

Given that the density of heptane is

d_h=\frac{0.684g}{mL}

The mass of heptane is

m_h=31\text{ g}

The density of water is

d_w=\frac{1g}{mL}

The mass of water is

m_w=37\text{ g}

The volume of heptane will be

\begin{gathered} V_h=\frac{m_h}{d_h} \\ =\frac{31}{0.684} \\ =45.32\text{ mL} \end{gathered}

The volume of water will be

\begin{gathered} V_w=\frac{m_w}{d_w} \\ =\frac{37}{1} \\ =37\text{ mL} \end{gathered}

Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.

The total volume of liquid in the cylinder will be

\begin{gathered} V=V_h+V_w \\ =45.32+37 \\ =82.32\text{ mL} \end{gathered}

The total volume of liquid in the cylinder will be 82.32 mL.

7 0
1 year ago
Describe a vibration that is not periodic. NO LINKS PLEASE
Paraphin [41]

Answer:

1)The position change of almost any manually operated room light switch.

2) Sunlight striking a point on the ground on a partly cloudy and windy day

Explanation:

4 0
3 years ago
An automobile tire is inflated with air originally at 10.0°C and normal atmospheric pressure. During the process, the air is com
solong [7]

Answer:

(a) 3.81\times 10^5\ Pa

(b) 4.19\times 1065\ Pa

Explanation:

<u>Given:</u>

  • T_1 = The first temperature of air inside the tire = 10^\circ C =(273+10)\ K =283\ K
  • T_2 = The second temperature of air inside the tire = 46^\circ C =(273+46)\ K= 319\ K
  • T_3 = The third temperature of air inside the tire = 85^\circ C =(273+85)\ K=358 \ K
  • V_1 = The first volume of air inside the tire
  • V_2 = The second volume of air inside the tire = 30\% V_1 = 0.3V_1
  • V_3 = The third volume of air inside the tire = 2\%V_2+V_2= 102\%V_2=1.02V_2
  • P_1 = The first pressure of air inside the tire = 1.01325\times 10^5\ Pa

<u>Assume:</u>

  • P_2 = The second pressure of air inside the tire
  • P_3 = The third pressure of air inside the tire
  • n = number of moles of air

Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.

Using ideal gas equation, we have

PV = nRT\\\Rightarrow \dfrac{PV}{T}=nR = constant\,\,\,(\because n,\ R\ are\ constants)

Part (a):

Using the above equation for this part of compression in the air, we have

\therefore \dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}\\\Rightarrow P_2 = \dfrac{V_1}{V_2}\times \dfrac{T_2}{T_1}\times P_1\\\Rightarrow P_2 = \dfrac{V_1}{0.3V_1}\times \dfrac{319}{283}\times 1.01325\times 10^5\\\Rightarrow P_2 =3.81\times 10^5\ Pa

Hence, the pressure in the tire after the compression is 3.81\times 10^5\ Pa.

Part (b):

Again using the equation for this part for the air, we have

\therefore \dfrac{P_2V_2}{T_2}=\dfrac{P_3V_3}{T_3}\\\Rightarrow P_3 = \dfrac{V_2}{V_3}\times \dfrac{T_3}{T_2}\times P_2\\\Rightarrow P_3 = \dfrac{V_2}{1.02V_2}\times \dfrac{358}{319}\times 3.81\times 10^5\\\Rightarrow P_3 =4.19\times 10^5\ Pa

Hence, the pressure in the tire after the car i driven at high speed is 4.19\times 10^5\ Pa.

8 0
3 years ago
Other questions:
  • Which two forms of energy travel in waves​
    12·1 answer
  • A strong-armed physics student throws a tennis ball vertically. The ball stays in the air for 5.5 seconds. Assuming the ball lef
    7·1 answer
  • What are the standard units of specific gravity?
    14·2 answers
  • 16. How much does the gravitational potential
    5·1 answer
  • Why have fossil fuels become our primary energy resource
    12·2 answers
  • In order for work to be done, what three things are necessary?
    14·2 answers
  • Suppose you are in an elevator. As the elevator starts upward, its speed will increase. During this time when the elevator is mo
    7·1 answer
  • A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of
    9·1 answer
  • This problem has been solved! See the answer A 6.0 kg object, initially at rest in free space, "explodes" into three segments of
    14·1 answer
  • Insect A moves 5.0 m/min and insect B moves
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!