Based on my information, this would actually be representing
"the average kinetic energy of water particles". So, as you take notice that where this temperature is being located, and also, how this would be

°C, this would make more sense for this to be representing as <span>the
average kinetic energy of water particles.</span>
The centripetal acceleration a is 4.32
10^-4 m/s^2.
<u>Explanation:</u>
The speed is constant and computing the speed from the distance and time for one full lap.
Given, distance = 400 mm = 0.4 m, Time = 100 s.
Computing the v = 0.4 m / 100 s
v = 4
10^-3 m/s.
radius of the circular end r = 37 mm = 0.037 m.
centripetal acceleration a = v^2 / r
= (4
10^-3)^2 / 0.037
a = 4.32
10^-4 m/s^2.
Concaved lenses...........
Answer:
The magnitude of angular acceleration is
.
Explanation:
Given that,
Initial angular velocity, 
When it switched off, it comes o rest, 
Number of revolution, 
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is
. Hence, this is the required solution.
To solve this problem we will apply the concepts related to the calculation of the speed of sound, the calculation of the Mach number and finally the calculation of the temperature at the front stagnation point. We will calculate the speed in international units as well as the temperature. With these values we will calculate the speed of the sound and the number of Mach. Finally we will calculate the temperature at the front stagnation point.
The altitude is,

And the velocity can be written as,


From the properties of standard atmosphere at altitude z = 20km temperature is



Velocity of sound at this altitude is



Then the Mach number



So front stagnation temperature



Therefore the temperature at its front stagnation point is 689.87K