Convert the units of power,W = 7 hp = 7 * 745.69 = 5219.83 WCalculate the power input to the pump using the efficiency of the pump equationn=Wpump/Wshaft
Substitute 0.82 for n and 5219.83 for Wshaft0.82=Wpump/5219.83 Wpump=0.82*5219.83=4280.26 WCalculate the mass flow ratein=Wpump/(gz_2 )Where g is the acceleration due to gravity, and z_2 is the elevation of water. Substitute 4280.26 for Wpump, 9.81 m/s^2 for g, and 19m for z_2in = 4280.26 / 9.81 * 19 = 22.9640 m^3/sCalculate the volume flow rate of waterV=m/ρWhere ρ is the density of water. Substitute 22.9640 m^3/s for in and 1000 m^3/kg for ρ, we get V = 22.9640 / 1000 = 0.0230 kg/sTherefore, the volume flow rate of water is 0.0230 kg/s
Answer:
The runner's acceleration was 
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:

Solving for a:

The runner speeds up from vo=5 m/s to vf=9 m/s in t=4 seconds, thus:


The runner's acceleration was 
Answer:
true
Explanation:
a wheelbarrow has its load situated between the fulcrum and the force the wheel Barrow is 2nd class because of its resistance between the force and the axis
Answer;
The temperature change for the second pan will be lower compared to the temperature change of the first pan
Explanation;
-The quantity of heat is given by multiplying mass by specific heat and by temperature change.
That is; Q = mcΔT
This means; the quantity of heat depends on the mass, specific heat capacity of a substance and also the change in temperature.
-Maintaining the same quantity of heat, with another pan of the same mass and greater specific heat capacity would mean that the change in temperature would be much less lower.
Answer:
422.36 N
Explanation:
given,
time of rotation = 4.30 s
T = 4.30 s
Assuming the diameter of the ring equal to 16 m
radius, R = 8 m


v = 11.69 m/s
now, Force does the ring push on her at the top





N = 422.36 N
The force exerted by the ring to push her is equal to 422.36 N.