1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
3 years ago
11

The source of the centripetal force that arises when a runner rounds a curve on a track is _____.

Physics
2 answers:
kicyunya [14]3 years ago
5 0

while taking a turn on a track, the track provides the frictional force acting towards the center of the curve. we know that to move in a curve, centripetal force is required. here since the frictional force acts towards the center, it provides the necessary centripetal force to move in circle. hence the correct choice is

friction

mel-nik [20]3 years ago
3 0

It's actually Friction.

I just did the test and got it right.


You might be interested in
I desperately need help with my Physics Exam I am failing this class will mark Brainliest to whoever helps the most: PART 1 (I d
GREYUIT [131]
  1. Option 2nd is correct

  1. last option is correct
6 0
2 years ago
If a total force exerted by water in a container with a bottom area of 3 square meters is 900 newtons, what's the water pressure
anyanavicka [17]
<h3>Answer:</h3>
  • p=300 Pa
<h3>Explanation:</h3>

_______________

S=3 m²

F=900 N

_______________

p - ?

_______________

p=F/S=900 N / 3 m² = 300 Pa

6 0
2 years ago
at a certain moment, an object has an amount of 200 of motion energy and 400 of gravitational potential energyThe object is also
Radda [10]

Answer:

twice as much energy

Explanation:

8 0
2 years ago
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
3 years ago
Falling raindrops frequently develop electric charges. Does this create noticeable forces between the droplets? Suppose two 1.8
umka2103 [35]

Answer:

a) F=2.048\times 10^{-7}\ N

b) a=0.1138\ m.s^{-2}

Explanation:

Given:

  • mass of raindrops, m=1.8\times 10^{-6}\ kg
  • charge on the raindrops, q=+21\times 10^{-12}\ C
  • horizontal distance between the raindrops, r=0.0044\ m

A)

<u>From the Coulomb's Law the force between the charges is given as:</u>

F=\frac{1}{4\pi.\epsilon_0} .\frac{q_1.q_2}{r^2}

we have:

\epsilon_0=8.854\times 10^{-12}\ C^2.N^{-1}.m^{-2}

<em>Now force:</em>

F=\frac{1}{4\pi\times 8.854\times 10^{-12}} .\frac{21\times 10^{-12}\times 21\times 10^{-12}}{0.0044^2}

F=2.048\times 10^{-7}\ N

B)

<u>Now the acceleration on the raindrops due to the electrostatic force:</u>

a=\frac{F}{m}

a=\frac{2.048\times 10^{-7}}{1.8\times 10^{-6}}

a=0.1138\ m.s^{-2}

7 0
3 years ago
Read 2 more answers
Other questions:
  • What are the uses of Electricity in our every day life?
    14·1 answer
  • A book with a mass of 1kg is dropped from a height of 3m . What is the potential energy of th book when it reaches the floor?​
    15·1 answer
  • Pure rain, egg yolks, battery acid, and milk are all examples of acids.<br> True or false?
    6·1 answer
  • A sample of gas has an initial volume of 23.6 l at a pressure of 1.52 atm . if the sample is compressed to a volume of 10.5 l: ,
    11·1 answer
  • Select the statements that describe a vector. Check all that apply
    7·2 answers
  • What causes a siamese cat to have dark fur on some parts of its body?
    7·1 answer
  • 15 POINTS PLZ HELP IM ON A TIMER! IM ON EDGE EXAM
    14·2 answers
  • A child weighing 200 N is being held back in a swing by a horizontal force of 125 N, as shown in the image. What is the tension
    10·1 answer
  • Important!
    6·1 answer
  • In a PE class, the teacher requires his students to monitor periodically their progress towards the fitness goals. Which of thes
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!