Answer:
A single molecule of water has been isolated for the first time by trapping it in a fullerene cage. Water molecules are never found alone — they are always hydrogen-bonded to other molecules of water or polar compounds.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets. The atoms consist of matter that has a nucleus in the centre. The difference between atoms is expressed by atomic numbers.
Explanation:
I think is 1 and a half km
Answer:
0.7457 g is the mass of the helium gas.
Explanation:
Given:
Pressure = 3.04 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25.0 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
3.04 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
<u>⇒n = 0.1863 moles</u>
Molar mass of helium = 4.0026 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>0.7457 g is the mass of the helium gas. </u>
Move your rope up and down and that will create transverse waves.
Was this helpful?
True because it is warmer closer to the equator