Answer:
6.5e-4 m
Explanation:
We need to solve this question using law of conservation of energy
Energy at the bottom of the incline= energy at the point where the block will stop
Therefore, Energy at the bottom of the incline consists of the potential energy stored in spring and gravitational potential energy=
Energy at the point where the block will stop consists of only gravitational potential energy=
Hence from Energy at the bottom of the incline= energy at the point where the block will stop
⇒
⇒
Also 
where
is the mass of block
is acceleration due to gravity=9.8 m/s
is the difference in height between two positions
⇒
Given m=2100kg
k=22N/cm=2200N/m
x=11cm=0.11 m
∴
⇒
⇒
⇒h=0.0006467m=
Answer:
6.44 × 10^10 N/C
Explanation:
Electric field due to the ring on its axis is given by
E = K q r / (r^2 + x^2)^3/2
Where r be the radius of ring and x be the distance of point from the centre of ring and q be the charge on ring.
r = 0.25 m, x = 0.5 m, q = 5 C
K = 9 × 10^9 Nm^2/C^2
E = 9 × 10^9 × 5 × 0.25 / (0.0625 + 0.25)^3/2
E = 6.44 × 10^10 N/C
Answer: 200 N/m
Explanation:
The Gravitational spring energy(Us) is equal to 1/2kx^2. So we have x as .2 m and Us as 4 N. So 4 N = 1/2 * k * .2^2. So now we solve for K and get 200 N/m.
C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.