Answer:
3.62m/s and 2.83m/s
Explanation:
Apply conservation of momentum
For vertical component,
Pfy = Piy
m* Vof (sin38) - m*Vgf (sin52) = 0
Divide through by m
Vof(sin38) - Vgf(sin52) = 0
Vof(sin38) = Vgf(sin52)
Vof (sin38/sin52) = Vgf
0.7813Vof = Vgf
For horizontal component
Pxf= Pxi
m* Vof (cos38) - m*Vgf (cos52) = m*4.6
Divide through by m
Vof(cos38) + Vgf(cos52) = 4.6
Recall that
0.7813Vof = Vgf
Vof(cos38) + 0.7813 Vof(cos52) = 4.6
0.7880Vof + 0.4810Vof = 4.
1.269Vof = 4.6
Vof = 4.6/1.269
Vof = 3.62m/s
Recall that
0.7813Vof = Vgf
Vgf = 0.7813 * 3.62
Vgf = 2.83m/s
Frictional force always opposes applied force, so the net force on the cart would have to be 19N - 1.7N. The acceleration can then be solved by using the relation: F = ma. This is shown below:
Net force = 19 - 1.7 = 17.3 N
Acceleration = Force / mass
Acceleration = 17.3 / 2
Acceleration = 8.65 N/m
Kinetic energy is energy of motion.
In the cases of a stretched rubber band, water in a reservoir, natural gas, or an object suspended above the ground, everything is just laying there, and nothing is moving. There's nothing there that has kinetic energy.
If there's any wind, then air is moving. The moving air has kinetic energy.
Answer:
8.00 kJ
Explanation:
The first thing is to determine what quantities are there.
the mass of water = 1 000 kg
initial velocity, u = 6 m/s
final velocity, v = 4 m/s
the generator is operating at 100 % efficiency, so there is no energy loss.
The kinetic energy, Ek is converted to electrical energy, therefore Ek = electrical energy.
The kinetic energy is calculated as follows:
Ek = 1/2 mv²
= 1/2×(1 000)× (4)²
= 8 000 J/s
= 8.00 kJ Ans
Answer: 430 nm.
Explanation:
The relation of wavelength and frequency is:
Formula used :
where,
= frequency =
= wavelength = ?
c = speed of light = 
Now put all the given values in this formula, we get

Thus the wavelength (in nm) of the blue light emitted by a mercury lamp is 430 nm.