Answer: 500L
Explanation:
No of moles= volume× molarity/1000
No of moles =0.5moles
Volume=?
Molarity of a gas at stp = 1M
Stp means standard temperature and pressure
No of moles = volume ×molarity/1000
Substitute the values
0.5=volume×1/1000
Cross multiply
Volume = 1000×0.5
Volume = 500L
The volume is 500L
Answer:
142.82 g
Explanation:
The following data were obtained from the question:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Density of gol= 19.3 g/cm³
Mass of gold =.?
Next, we shall determine the volume of the gold. This can be obtained as follow:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Volume of gold =.?
Volume of gold = (Volume of water + gold) – (Volume of water)
Volume of gold = 19.4 – 12
Volume of gold = 7.4 mL
Finally, we shall determine the mass of the gold as follow:
Note: 1 mL is equivalent to 1 cm³
Volume of gold = 7.4 mL
Density of gol= 19.3 g/cm³ = 19.3 g/mL
Mass of gold =?
Density = mass /volume
19.3 = mass of gold /7.4
Cross multiply
Mass of gold = 19.3 × 7.4
Mass of gold = 142.82 g
Therefore, the mass of the gold pebble is 142.82 g
Use the brass foil to carry the current, because metals conduct electricity well in the solid state.
Dissolve the calcium chloride in water, because ionic compounds conduct electricity well when dissolved.
Pure water, sugar, or methane are not useful because they are covalent compounds and do not conduct an electric current.
Answer:
14.336 g MnF₂
Explanation:
number of moles = mass / molecular weight
number of moles of MnI₂ = 55 / 309 = 0.178 moles
number of moles of F₂ = 55 / 38 = 1.447 moles
From the reaction and the number of moles calculated we deduce that the fluorine F₂ is a limiting reactant.
So:
if 13 moles of F₂ reacts to produce 2 moles of MnF₃
then 1.447 moles of F₂ reacts to produce X moles of MnF₃
X = (1.447 × 2) / 13 = 0.223 moles of MnF₃ (100% yield)
For 57.2% yield we have:
number of moles of MnF₃ = (57.2 / 100) × 0.223 = 0.128 moles
mass = number of moles × molecular weight
mass of MnF₃ = 0.128 × 112 = 14.336 g