Answer:
The code will be:
#include <stdio.h>
#include <stdlib.h>
main () {
double weight, shippingCharge, rate, segments;
int distance;
printf("Enter the weight: \n");
scanf("%lf", &weight);
printf("Enter the distance: \n");
scanf("%i", &distance);
if (weight <= 10) {
printf("Rate is $3.00 \n");
rate = 3;
} else {
printf("Rate is $5.00 \n");
rate = 5;
}
if (distance % 500 == 0) {
segments = distance / 500;
} else {
segments = distance / 500 + 1;
}
shippingCharge = rate * segments;
if (distance >1000) {
shippingCharge = shippingCharge + 10;
}
printf("Your shipping charge is $%lf\n", shippingCharge);
system ("pause");
}
Answer:
Option B
Explanation:
Centripetal acceleration
Tangential component=dr=2*1.75=3.5
Answer:
M_c = 61.6 Nm
Explanation:
Given:
F_a = 2.5 KN
Find:
Determine the moment of this force about C for the two casesshown.
Solution:
- Draw horizontal and vertical vectors at point A.
- Take moments about point C as follows:
M_c = F_a*( 42 / 150 ) *88
M_c = 2.5*( 42 / 150 ) *88
M_c = 61.6 Nm
- We see that the vertical component of force at point A passes through C.
Hence, its moment about C is zero.
Answer:
The value of heat transferred watt per foot length Q = 54.78 Watt per foot length.
Explanation:
Diameter of pipe = 2 in = 0.0508 m
Steam temperature = 300 F = 422.04 K
Duct temperature = 70 F = 294.26 K
Emmisivity of surface 1 = 0.79
Emmisivity of surface 2 = 0.276
Net emmisivity of both surfaces ∈ = 0.25
Stefan volazman constant = 5.67 ×
Heat transfer per foot length is given by
Q = ∈ A ( ) ------ (1)
Put all the values in equation (1) , we get
Q = 0.25 × 5.67 × × 3.14 × 0.0508 × 1 × ( )
Q = 54.78 Watt per foot.
This is the value of heat transferred watt per foot length.