Your minimum selling price must be HIGHER THAN your variable costs
Answer:
note:
<u><em>solution is attached due to error in mathematical equation. please find the attachment</em></u>
Answer:
0.0297M^3/s
W=68.48kW
Explanation:
Hello! To solve this problem, we must first find all the thermodynamic properties at the input (state 1) and the compressor output (state 2), using the thermodynamic tables
Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
state 1
X=quality=1
T=-26C
density 1=α1=5.27kg/m^3
entalpy1=h1=234.7KJ/kg
state 2
T2=70
P2=8bar=800kPa
density 2=α2=31.91kg/m^3
entalpy2=h2=306.9KJ/kg
Now to find the flow at the outlet of the compressor, we remember the continuity equation that states that the mass flow is equal to the input and output.
m1=m2
(Q1)(α1)=(Q2)(α2)

the volumetric flow rate at the exit is 0.0297M^3/s
To find the power of the compressor we use the first law of thermodynamics that says that the energy that enters must be equal to the energy that comes out, in this order of ideas we have the following equation
W=m(h2-h1)
m=Qα
W=(0.18)(5.27)(306.9-234.7)
W=68.48kW
the compressor power is 68.48kW
Answer:
Technician A only
Explanation:
The application of the breaks by stepping on the break pedal moves the pedal pushrod and plunger forward within the diaphragm plate, bringing about the contact between the vacuum port seal and the vacuum valve that closes the vacuum port and the passage that connects the left and right chambers such that the pressure in one chamber and te vacuum in the other chamber are held steady.
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem.