Answer:
Explanation:
The described situation is is related to vertical motion (and free fall). So, we can use the following equation that models what happens with this rock:
(1)
Where:
is the rock's final height
is the rock's initial height
is the rock's initial velocity
is the angle at which the rock was thrown (directly upwards)
is the time
is the acceleration due gravity in Planet X
Then, isolating
and taking into account
:
(2)
(3)
Finally:
(4) This is the acceleration due gravity in Planet X
Answer:
they both weight the same
Explanation:
they both weigh one kilo so they are the same
The sun is facing a certain side of the earth
<span>14.79 m/s
At the top of the loop, there's 2 opposing forces. The centripetal force that's attempting to push the roller coaster away and the gravitational attraction. These 2 forces are in opposite directions and their sum is 0.80 mg where m = mass and g = gravitational attraction. So let's calculate the amount of centripetal force we need.
0.80 = F - 1.00
1.80 = F
So we need to have a centripetal force that's 1.8 times the local gravitational attraction which is 9.8 m/s^2. So
1.8 * 9.8 m/s^2 = 17.64 m/s^2
The formula for centripetal force is
F = mv^2/r
where
F = force
m = mass
v = velocity
r = radius
We can eliminate mass from the equation since the same mass is being affected by both the centripetal force and gravity. So:
F = v^2/r
17.64 m/s^2 = v^2/12.4 m
218.736 m^2/s^2 = v^2
14.78972616 m/s = v
So the velocity at the top of the loop (rounded to 2 decimal places) is 14.79 m/s.</span>