Answer:
avriage force F = 2722.5 N
Explanation:
For this problem we can use Newton's second law, to calculate the average force and acceleration we can find it by kinematics.
vf² = v₀² - 2 ax
The final carriage speed is zero (vf = 0)
0 = v₀² - 2ax
a = v₀² / 2x
a = 1.1²/(2 0.200)
a = 3.025 m / s²
a = 3.0 m/s²
We calculate the average force
F = ma
F = 900 3,025
F = 2722.5 N
When air resistance is ignored, initial velocity of the projectile affect the range and maximum height of the projectile.
Projectile is a missile designed to be fired from a rocket or gun.
A projectile is the object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance.
The range is defined as the distance between the launch point and the point where the projectile hits the ground.
The height from the ground at the top most position of projectile is referred to as maximum height.
When air resistance is ignored, initial velocity of the projectile affect the range and maximum height of the projectile.
Learn more about maximum height click here brainly.com/question/6261898
#SPJ4
Hey there!
In this case, it is possible to solve this problem by using the widely-known steam tables which show that at 90 °C, the pressure that produces a vapor-liquid mixture at equilibrium is about 70.183 kPa (Cengel, Thermodynamics 5th edition).
Moreover, for the calculation of the volume, it is necessary to calculate the volume of the vapor-liquid mixture, given the quality (x) it has:

Thus, since 8 kg correspond to liquid water, 2 kg must correspond to steam, so that the quality turns out:

Now, at this temperature and pressure, the volume of a saturated vapor is 2.3593 m³/kg whereas that of the saturated liquid is 0.001036 m³/kg and therefore, the volume of the mixture is:

This means that the volume of the container will be:

Regards!
Answer:
a

b

Explanation:
From the question we are told that
The initial position of the particle is 
The initial velocity of the particle is 
The acceleration is 
The time duration is 
Generally from kinematic equation

=> 
=> 
Generally from kinematic equation

Here s is the distance covered by the particle, so

=> 
Generally the final position of the particle is

=> 
=> 