You just multiply these two numbers, it's 1250J
Answer:
No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.
Explanation:
A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.
Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:
* When the diameter and length are comparable (i.e have the same measurement)
When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.
Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.
Answer:
A. External
Explanation:
External stimulus includes touch/pain, vision, smell, taste, and sound.
Answer:
Explanation:
For the cat to stay in place on the merry go round without sliding the magnitude of maximum static friction must be equal to magnitude of centripetal force
Where the r is the radius of merry-go-round and v is the tangential speed
but
So we have
Substitute the given values
So
Answer:
The speed of the 11.5kg block after the collision is V≅4.1 m/s
Explanation:
ma= 4.8 kg
va1= 7.3 m/s
va2= - 2.5 m/s
mb= 11.5 kg
vb1= 0 m/s
vb2= ?
vb2= ( ma*va1 - ma*va2) / mb
vb2= 4.09 m/s ≅ 4.1 m/s