Answer:
There are 0.93 g of glucose in 100 mL of the final solution
Explanation:
In the first solution, the concentration of glucose (in g/L) is:
15.5 g / 0.100 L = 155 g/L
Then a 30.0 mL sample of this solution was taken and diluted to 0.500 L.
- 30.0 mL equals 0.030 L (Because 30.0 mL ÷ 1000 = 0.030 L)
The concentration of the second solution is:

So in 1 L of the second solution there are 9.3 g of glucose, in 100 mL (or 0.1 L) there would be:
1 L --------- 9.3 g
0.1 L--------- Xg
Xg = 9.3 g * 0.1 L / 1 L = 0.93 g
Answer:
That means that if you are calculating entropy change, you must multiply the enthalpy change value by 1000. So if, say, you have an enthalpy change of -92.2 kJ mol-1, the value you must put into the equation is -92200 J mol-1
Answer:
Saffi only
Explanation:
I just took the test and that was the correct answer :)
The balanced chemical reaction would be
<span>fecl2 + 2naoh = fe(oh)2(s) + 2nacl
Initial amounts of the reactants are given, so, we need to determine which of the reactants is the limiting reactant and use this amount to determine what is asked. However, what is being asked is how many of the FeCl2 is used in the reaction, showing that it is NaOH that is the limiting reactants. Thus, we just use the initial amount of NaOH and relate the substances by the chemical reaction as follows:
6 mol NaOH ( 1 mol FeCl2 / 2 mol NaOH ) = 3 mol FeCl2
Therefore, 3 moles of FeCl2 is used up and 3 moles of FeCl2 is also left after the reaction.</span>