The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.
Answer:
+1.03 V
Explanation:
The standard emf of the voltaic cell is the value of the standard potential of it, which is calculated by the standard reduction potential (E°).
The standard reduction potential is the potential needed for the reduction reaction happen, and it's determined by the reaction with the hydrogen cell (which has E° = 0.0V). The half-reactions of reduction of Ni⁺² and Ag⁺, are:
Ni⁺²(aq) + 2e⁻ → Ni(s) E° = -0.23 V
Ag⁺(aq) + e⁻ → Ag(s) E° = +0.80 V
The value is calculated by a spontaneous reaction, in which the cell with the greater E° is reduced (gain electrons), and the other is oxidized (loses electrons). So, Ag⁺ reduces.
emf = E°reduces - E°oxides
emf = 0.80 - (-0.23)
emf = +1.03 V
Water is the BL base if it accepted a proton from NH4.
Can I get brainliest please?
Explanation:
A substance burning in the presence of oxygen and leads to the formation of heat and light is called combustion.
Some important points about combustion are as follows:
- Fuel should be present for burning.
- Air should be present for the supply of oxygen.
- There should be heat (or ignition temperature) to initiate the chemical reaction.
Answer:
2Atoms
Explanation:
in 
There exist 2 atoms of nitrogen, 4 atoms of hydrogen and three atoms of oxygen. so the answer is 2atoms