Answer:
a. 3-methylbutan-2-ol
b. 2-methylcyclohexan-1-ol
Explanation:
For this reaction, we must remember that the hydroboration is an <u>"anti-Markovnikov" reaction</u>. This means that the "OH" will be added at the <em>least substituted carbon of the double bond.</em>
In the case of <u>2-methyl-2-butene</u>, the double bond is between carbons 2 and 3. Carbon 2 has two bonds with two methyls and carbon 3 is attached to 1 carbon. Therefore <u>the "OH" will be added to carbon three</u> producing <u>3-methylbutan-2-ol</u>.
For 1-methylcyclohexene, the double bond is between carbons 1 and 2. Carbon 1 is attached to two carbons (carbons 6 and 7) and carbon 2 is attached to one carbon (carbon 3). Therefore<u> the "OH" will be added to carbon 2</u> producing <u>2-methylcyclohexan-1-ol</u>.
See figure 1
I hope it helps!
<u>Answer:</u> The rate law of the reaction is ![\text{Rate}=k[HgCl_2][C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5BC_2O_4%5E%7B2-%7D%5D%5E2)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[HgCl_2]^a[C_2O_4^{2-}]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5Ea%5BC_2O_4%5E%7B2-%7D%5D%5Eb)
where,
a = order with respect to 
b = order with respect to 
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Expression for rate law for third observation:
....(3)
Expression for rate law for fourth observation:
....(4)
Dividing 2 from 1, we get:

Dividing 2 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[HgCl_2]^1[C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5E1%5BC_2O_4%5E%7B2-%7D%5D%5E2)
Phosphoric acid is a weak acid, while rubidium hydroxide is a strong acid.
H₃PO₄ + RbOH --> Rb₃PO₄ + H₂O
We get Rb₃PO₄ because PO₄ has a charge of 3-, that is PO₄³⁻. Rb has a charge of 1+. You give the subscript of one the charge of the other as this is an ionic compound. So you end up with Rb₃PO₄, a neutral compound.
Now let's balance the equation:
H₃PO₄ + 3RbOH --> Rb₃PO₄ + 3H₂O
I think it is B
Explained answer:
Glaciers dissolve and melt because they are made out of ice
Answer:
2 51 × 10^-5mol/L
Explanation:
The concentration of hydrogen ions can be calculated using the formula below :
pH = -log [H+]
pH = 4.6
[H+] = ?
[H+] = Antilog (-4.6)
[H+] = 2 51 × 10^-5mol/L