Answer:
h = 375 KW/m^2K
Explanation:
Given:
Thermo-couple distances: L_1 = 10 mm , L_2 = 20 mm
steel thermal conductivity k = 15 W / mK
Thermo-couple temperature measurements: T_1 = 50 C , T_2 = 40 C
Air Temp T_∞ = 100 C
Assuming there are no other energy sources, energy balance equation is:
E_in = E_out
q"_cond = q"_conv
Since, its a case 1-D steady state conduction, the total heat transfer rate can be found from Fourier's Law for surfaces 1 and 2
q"_cond = k * (T_1 - T_2) / (L_2 - L_1) = 15 * (50 - 40) / (0.02 - 0.01)
=15KW/m^2
Assuming SS is solid, temperature at the surface exposed to air will be 60 C since its gradient is linear in the case of conduction, and there are two temperatures given in the problem. Convection coefficient can be found from Newton's Law of cooling:
q"_conv = h * ( T_∞ - T_s ) ----> h = q"_conv / ( T_∞ - T_s )
h = 15000 W / (100 - 60 ) C = 375 KW/m^2K
Answer:
R=1923Ω
Explanation:
Resistivity(R) of copper wire at 20 degrees Celsius is 1.72x10^-8Ωm.
Coil length(L) of the wire=37.0m
Cross-sectional area of the conductor or wire (A) = πr^2
A= π * (2.053/1000)/2=3.31*10^-6
To calculate for the resistance (R):
R=ρ*L/A
R=(1.72*10^8)*(37.0)/(3.31*10^-6)
R=1922.65Ω
Approximately, R=1923Ω
Given:

frequency, f = 60.0 Hz
frequency, f' = 45.0 Hz

Solution:
To calculate max current in inductor,
:
At f = 60.0 Hz


L = 0.1326 H
Now, reactance
at f' = 45.0 Hz:


Now,
is given by:
Therefore, max current in the inductor,
= 2.13 A
Answer:
d. 90%
Explanation:
As we know that internal combustion engine produce lot's of toxic gases to reduce these toxic gases in the environment a device is used and this device is know as current modeling converter.
Generally the efficiency of current model catalytic converter is more than 90%.But the minimum efficiency this converter is 90%.
So option d is correct.
d. 90%
Answer:
2.8
Explanation:
The ideal mechanical advantage of the pulley IMA = D'/D where D' = diameter of output pulley = 7 inches and D = diameter of input pulley = 2.5 inches
So, IMA = D'/D
= 7/2.5
= 2.8
So, the ideal mechanical advantage of the pulley IMA = 2.8