To solve this problem, we can use the cosine formula for
calculating the length of the displacement:
c^2 = a^2 + b^2 – 2 a b cos θ
where c is the displacement, a = 3.5 km, b = 4.5 km, and θ
is the angle inside the triangle
Since the geeze turned 40° from west to north, so the
angle inside the triangle must be:
θ = 180 – 40 = 140°
c^2 = 3.5^2 + 4.5^2 – 2 (3.5) (4.5) cos 140
c^2 = 56.63
c = 7.53 km
<span>So the magnitude of the displacement is 7.53 km</span>
Photosynthesis is the name given to the set of chemical reactions performed by plants to convert energy from the sun into chemical energy in the form of sugar. Specifically, plants use energy from sunlight to react carbon dioxide and water to produce sugar (glucose) and oxygen. Many reactions occur, but the overall chemical reaction for photosynthesis is:
6 CO2 + 6 H2O + light → C6H12O6 + 6 O2
So it would be C, I hope this helped! :)
Answer:
Mass of the planet = 6.0 × 
Explanation:
Time period = 2π (R + h) / v
Orbital speed (v) = √GM / (R + h)
T² = 4π² (R + h)² / (GM/ (R + h))
= 4π² (R + h)³ / GM
making m the subject of the formula
m = 4π² (R + h)³ / GT²
= 4π² ( 6.38 ×
+ 230 × 10³ )³ / ( 6.67 ×
) × (89 × 60)²
= 4π² ( 6610000)³ / ( 6.67 ×
) × (89 × 60)²
= 5.99 × 
= 6.0 × 
The projectile maintains its horizontal component of speed because there's nothing exerting any horizontal force on it. <em>(b) </em>
Gravity has no effect on horizontal motion.