Answer:
A
Explanation:
Hydrocarbons with short chain lengths are more volatile than those with longer chains. A practical example of this can be seen in the first few members of the alkane series. They are mostly gaseous in nature and this is quite a contrast to the next few members which are solid in nature.
As we move down the group, we can see that there is an increase in the number of solids. Hence, as we go down the group we can see a relative increase in order and thus we expect more stability at room temperature compared to the volatility of the shorter chain
The correct answer would be we have no other frame of reference besides the sky. We could actually tell we are moving because of the shifting of stars in the sky over time. But really, “A” would be your answer. We have the same momentum of the earth. It’s like being on a train at a constant speed. The only way you know you’re moving is if you look out the window or the speed changes causing you to be pushed around. Same thing with earth, our only reference is the sky
Answer:
7.22 feet long
Explanation:
1 meter = 3.28084 feet
2.2 × 3.28084 = 7.2<u>1</u>785
= 7.22
I hope this is helpful :)
Answer:
chemical bond
Explanation:
because atom can join together by forming a chemical bond
Answer:
NH3 has greater water solubility due to intermoleculate interactions
Explanation:
Hi:
If we represent the structures of NH3 and SbH3 we can see that they are similar to the naked eye, this is because N and Sb belong to the same group of the periodic table (group 15).
However, the electronegativity of N is greater than that of Sb. The NH3 molecule is polar and can form an intermolecular interaction called hydrogen bridge with water.
Sb is less electronegative than N. The SBH3 molecule forms an intermolecular interaction with water called dipole-induced dipole.
The zone with positive charge density of the water molecule (hydrogens) is oriented towards the zone with positive charge density of SBH3 (the pair of electrons not shared)
Stronger intermolecular junctions allow greater solubility of NH3 molecules.
Successes in your homework