Explanation:
because it doesn't depend upon other unit like kg meter and second
Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
Answer:

Explanation:
We are given that
Mass,
Radius,r=0.8 m

Height,h=2.9 m
We have to find the angular acceleration of the cylinder.
According to question


Where



Substitute the value


Where 


Angular acceleration,
The answer is D.Competition with the Soviet Union spurred American space missions.
<span>♡♡Hope I helped!!! :)♡♡
</span>
'H' = height at any time
'T' = time after both actions
'G' = acceleration of gravity
'S' = speed at the beginning of time
Let's call 'up' the positive direction.
Let's assume that the tossed stone is tossed from the ground, not from the tower.
For the stone dropped from the 50m tower:
H = +50 - (1/2) G T²
For the stone tossed upward from the ground:
H = +20T - (1/2) G T²
When the stones' paths cross, their <em>H</em>eights are equal.
50 - (1/2) G T² = 20T - (1/2) G T²
Wow ! Look at that ! Add (1/2) G T² to each side of that equation,
and all we have left is:
50 = 20T Isn't that incredible ? ! ?
Divide each side by 20 :
<u>2.5 = T</u>
The stones meet in the air 2.5 seconds after the drop/toss.
I want to see something:
What is their height, and what is the tossed stone doing, when they meet ?
Their height is +50 - (1/2) G T² = 19.375 meters
The speed of the tossed stone is +20 - (1/2) G T = +7.75 m/s ... still moving up.
I wanted to see whether the tossed stone had reached the peak of the toss,
and was falling when the dropped stone overtook it. The answer is no ... the
dropped stone was still moving up at 7.75 m/s when it met the dropped one.