Answer:
13.5 J
Explanation:
mass of ball, m = 3 kg
maximum height, h = 2.8 m
initial speed, u = 8 m/ s
Angle of projection, θ
use the formula of maximum height


Sin θ = 0.926
θ = 67.8°
The velocity at maximum height is u Cosθ = 8 Cos 67.8 = 3 m/s
So, kinetic energy at maximum height

K = 0.5 x 3 x 3 x 3
K = 13.5 J
F = ma
We have mass = 0.2kg
and acceleration = 20 m/s^2
So..
F = (0.2)(20)
F = 4 N
Explanation:
Given that,
Length of the spring, l = 50 cm
Mass, m = 330 g = 0.33 kg
(A) The mass is released and falls, stretching the spring by 28 cm before coming to rest at its lowest point. On applying second law of Newton at 14 cm below the lowest point we get :

(B) The amplitude of the oscillation is half of the total distance covered. So, amplitude is 14 cm.
(C) The frequency of the oscillation is given by :

Answer:
143 batteries does Benny need to sample
Explanation:
Given data
confidence level = 97%
error = ±10 hours
standard deviation SD = 55 hours
to find out
how many batteries does Benny need to sample
solution
confidence level is 97%
so a will be 1 - 0.97 = 0.03
the value of Z will be for a 0.03 is 2.17 from standard table
so now we calculate no of sample i.e
no of sample = (Z× SD/ error)²
no of sample = (2.16 × 55 / 10)²
no of sample = 142.44
so 143 batteries does Benny need to sample