1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maurinko [17]
2 years ago
10

2. An object's weight is proportional to its _ or _ from another object

Physics
1 answer:
leva [86]2 years ago
5 0

Answer:

mass

gravitational pull

You might be interested in
PHYSICS CIRCUIT QUESTION PLEASE HELP!! 20 Points!
dimulka [17.4K]
This really calls for a blackboard and a hunk of chalk, but
I'm going to try and do without.

If you want to understand what's going on, then PLEASE
keep drawing visible as you go through this answer, either
on the paper or else on a separate screen.

The energy dissipated by the circuit is the energy delivered by
the battery.  We'd know what that is if we knew  I₁ .  Everything that
flows in this circuit has to go through  R₁ , so let's find  I₁  first.

-- R₃ and R₄ in series make 6Ω.
-- That 6Ω in parallel with R₂ makes 3Ω.
-- That 3Ω in series with R₁ makes 10Ω across the battery.
--  I₁ is  10volts/10Ω  =  1 Ampere.

-- R1:  1 ampere through 7Ω ... V₁ = I₁ · R₁ = 7 volts .

-- The battery is 10 volts. 
    7 of the 10 appear across R₁ .
   So the other 3 volts appear across all the business at the bottom.

-- R₂:  3 volts across it = V₂. 
           Current through it is  I₂ = V₂/R₂ = 3volts/6Ω = 1/2 Amp.

-- R3 + R4:  6Ω in the series combination
                     3 volts across it
                     Current through it is I = V₂/R = 3volts/6Ω = 1/2 Ampere

--  Remember that the current is the same at every point in
a series circuit.  I₃  and  I₄  must be the same 1/2 Ampere,
because there's no place in the branch where electrons can
be temporarily stored, no place for them to leak out, and no
supply of additional electrons.

-- R₃:  1/2 Ampere through it = I₃ .
           1/2 Ampere through 2Ω ... V₃ = I₃ · R₃ = 1 volt

-- R₄:  1/2 Ampere through it = I₄
           1/2 Ampere through 4Ω ... V₄ = I₄ · R₄ = 2 volts

Notice that  I₂  is 1/2 Amp, and (I₃ , I₄) is also 1/2 Amp.
So the sum of currents through the two horizontal branches is 1 Amp,
which exactly matches  I₁  coming down the side, just as it should.
That means that at the left side, at the point where R₁, R₂, and R₃ all
meet, the amount of current flowing into that point is the same as the
amount flowing out ... electrons are not piling up there.

Concerning energy, we could go through and calculate the energy
dissipated by each resistor and then addum up.  But why bother ?
The energy dissipated by the resistors has to come from the battery,
so we only need to calculate how much the battery is supplying, and
we'll have it.

The power supplied by the battery  = (voltage) · (current)

                                                         =  (10 volts) · (1 Amp) = 10 watts .

"Watt" means "joule per second".
The resistors are dissipating 10 joules per second,
and the joules are coming from the battery.

             (30 minutes) · (60 sec/minute)  =  1,800 seconds

             (10 joules/second) · (1,800 seconds)  =  18,000 joules  in 30 min

The power (joules per second) dissipated by each individual resistor is

                       P  =  V² / R
             or
                       P  =  I² · R ,

whichever one you prefer.  They're both true.

If you go through the 4 resistors, calculate each one, and addum up, you'll
come out with the same 10 watts / 18,000 joules total. 

They're not asking for that.  But if you did it and you actually got the same
numbers as the battery is supplying, that would be a really nice confirmation
that all of your voltages and currents are correct.
7 0
2 years ago
What did the scientists deduce from the fact that the ants eyes of the desert have multiple lenses
Evgesh-ka [11]
That the pupl is smaller than the nulian hope this helped

4 0
3 years ago
What is the difference between real and apparent weightlessness?
MrRissso [65]

Answer:

In space we feel weightlessness because the earth's gravity has less effect on us. The Earth's gravitational attraction at those altitudes is only about 11% less than it is at the Earth's surface. If you had a ladder that could reach as high as the shuttle's orbit, your weight would be 11% less at the top.

Explanation:

Hope this helps:)

4 0
2 years ago
A 90 kg body is taken to a planet where the acceleration due to
Serggg [28]

Answer:

2250N

Explanation:

W= mg,

where W= weight

m= mass

g= acceleration due to gravity

Given that the body is 90kg, m= 90kg.

Acceleration due to gravity of planet

= 2.5(10)

= 25 m/s²

Weight of body on planet

= 90(25)

= 2250N

*Mass is the amount of matter an object has and is constant (same on earth and the planet).

6 0
3 years ago
Read 2 more answers
What factors determine climate?
const2013 [10]

Answer:

here

Explanation:

Climate is determined by the temperature and precipitation characteristics of a region over time. The temperature characteristics of a region are influenced by natural factors such as latitude, elevation and the presence of ocean currents.

3 0
3 years ago
Other questions:
  • Which of these temperatures is closest to 100 k?
    5·1 answer
  • What is the main function of the nuclus
    14·2 answers
  • A 6,000 kg train car is moving to the right at 10 m/s and connects to a 4,000-kg train car that wasn't moving. What is the veloc
    10·1 answer
  • A proton enters a magnetic field (B = 5.00 x 10^-2 T INTO THE PAGE) with
    13·1 answer
  • In the sum of 54.34 and 45.66, the number of significant figure for the<br>answer is​
    5·1 answer
  • How is a good slide into a base performed?
    10·1 answer
  • 7. Un niño tiene 35 kg esta sobre un trineo que tiene una masa de 5 kg. Si el niño y el trineo
    8·1 answer
  • 2. A book with a mass of 2 Kg is resting on a shelf 1.5 m off the floor. How much gravitational
    14·2 answers
  • Which is the last stage in the life cycle of an average star? (1 point)
    8·1 answer
  • How can we make a non-luminous object luminous?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!