Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>
Answer:
Explanation:
Conclusion is simple you can just say that it is the value written in words form only.
Nothing else is written about it
Answer:
It was generally believed that mountains were produced by vertical forces
Explanation:
The main view of the world worked geologically prior to the 1960s was that the mountains were formed by the vertical forces of nature.
The early people prior to 1960s believed in many different natural phenomenons and they give their own reasons for their occurrence. But later many researchers and geophysicists studied the formation of the earth and came with possible answers to these questions.
Thus the answer is
" It was generally believed that mountains were produced by vertical forces."
Answer:
<em>v=40 m/s south</em>
Explanation:
<u>Momentum
</u>
It's a physical magnitude that measures the product of the mass by the velocity of a particle. Its units in the International System is kg.m/s and the formula is

Where m is the mass and v the velocity of the particle. If we wanted to solve for v, we have

The baseball has a momentum of 6.0 kg.m/s south and mass of 0.15kg, thus

The velocity is directed to the south
3 protons should be your answer