Answer:
The relation between frequency and time period is given by:
f = 1/T
Explanation:
In a wave motion, the particle move about the mean position with the passage of time. The particles rise to reach the highest point which is crest, and similarly falls to reach the lowest point which is trough. The cycle keeps on repeating.
The time period of the wave can be defined as the time taken to complete one such cycle. Time period is given by:
T = 2π/ω
Frequency can be defined as the number of cycles completed in unit time, which can be taken as the inverse of time period. frequency is given by
f = ω/2π
or
f = 1/T
Answer:
0.025 A
Explanation:
A = 50 cm^2 = 50 x 10^-4 m^2
B2 = 6 T, B1 = 2 T
db = 6 - 2 = 4 T
dt = 2 s
R = 0.4 ohm
Let i be the magnitude of induced current and e be the induced emf.
According to the Faraday's law of electromagnetic induction
e = dФ / dt
e = A dB / dt
e = 50 x 10^-4 x 4 / 2 = 0.01 V
i = e / R = 0.01 / 0.4 = 0.025 A
D. 289
Take the formula:
K=5/9(Fahrenheit-32)+273
Plug in Fahrenheit
K=5/9 (60-32)+273
From here it is simple math and you can plug it into your calculator getting 288.5555556 and round to 289
since centripetal acceleration is always towards the center of the circle
so at the given position where speed and acceleration is given the center coordinate will be towards the center of circle
also we know that
so the coordinates of the center will be
so the coordinate is (3.20 m, 4.04 m)