1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
3 years ago
13

Remy wonders if the height of the mountain has anything to do with the eventual size of the tsunami wave. How should Remy test t

his? A. Cause avalanches on several different mountains and see how large each resulting tsunami is. B. Build different-sized model mountains at the edge of a pool, pour sand down the side of each mountain, and see how large each resulting wave is. C. Pour different amounts of sand down the side of a model mountain into a pool and see how large each resulting wave is. D. Build a model town at the edge of a pool and see how large waves must be to cause damage to the buildings.
Physics
1 answer:
Anna71 [15]3 years ago
5 0

Answer:

<em>The answer is B</em>

Explanation:

<em>I got this from study island</em>

You might be interested in
A 6 kilogram block in outer space is moving at -100 m/s (to the left). It suddenly experiences three forces as shown below.
Alika [10]

Newton's second law and the kinematic relations allow to find the results for the questions about forces and the movement of the block are:

    B) the force applied to maintain the system is equilibrium is: F = 0.39 N with an angle of tea = 180º

    C) The maximum force is: F = 24 N

    D) The time to stop the block is: t = 25 s

 

Newton's second law establishes a relationship between the net force, the mass, and the acceleration of the body. In the special case that the acceleration is zero it is called the equilibrium condition.

B) They indicate a diagram of forces on the block, let's look for the components of the force that the block maintains with zero acceleration, in the attached we have a free-body diagram including the force applied to keep the system in equilibrium.

x-axis

      -10 + 12 sin 60 + Fₓ = 0

        Fₓ = 10- 12 sin 60 = -0.39 N

y-axis

       12 cos 60 - 6 + F_y = 0

        F_y = 6 - 12 cos 60 = 0 N

We can give the result of the force in two ways:

  • Form of coordinates F = -0.39 i ^ N
  • Form of module and angle.

Let's use Pythagoras' theorem to find the modulus.

       F = \sqrt{F_x^2 + F_y^2 } \\F = \sqrt{0.39^2 +0^2}  

       F = 0.39N

We use trigonometry for the angle.

       tan \theta = \frac{F_y}{F_x}

       tan θ=  0º

The component of the force is negative therefore this angle is in the second quadrant, to measure the angle from the positive side of the x axis in a counterclockwise direction.

        θ = 180 + θ'

        θ = 180 + 0

        θ = 180º

C) if the three forces can be moved and the maximum force occurs when they are all linear.

          10+ 6 + 6 + F = 0

          F = -24 N

D) if we maintain this force and eliminate the other three, the block stops, let's look for its acceleration.

          a = \frac{F}{m}  

          a = \frac{24}{6}  

         a =  4 m / s²

The acceleration is in the opposite direction of the initial velocity of the block v₀ = -100 m / s

If we use kinematic relations.

        v = v₀ - a t

Final velocity when stopped is zero

         t = \frac{0-v_o}{a}

         t = 100/4

         t = 25 s

In conclusion using Newton's second law and the kinematics relations we can find the results for the questions about the forces and the motion of the block are:

    B) the force applied to maintain the system is equilibrium is: F = 0.39 N with an angle of tea = 180º

    C) The maximum force is: F = 24 N

    D) The time to stop the block is: t = 25 s

Learn more about Newton's second law here: brainly.com/question/25545050

3 0
2 years ago
In lecture, it was discussed measurements of mass, temperature, time, volume and length. which of these is not an si base unit (
photoshop1234 [79]

From the options provided in the question, the measurement which is not an SI base unit is volume.

<h3>What is SI base unit?</h3>

This is referred to as the standard and fundamental unit of measurement of various quantities or variables which is defined arbitrarily and not by combinations of other units.

Volume is a quantity which is derived from the combination of lengths in a  three-dimensional manner which is why the formula is length× breadth×height and the unit is cm³. This is gotten from the combination of the unit of length which is cm.

This is therefore the reason why volume was chosen as the most appropriate choice.

Read more about Volume here brainly.com/question/463363

#SPJ1

6 0
1 year ago
Instead of moving back and forth, a conical pendulum moves in a circle at constant speed as its string traces out a cone (see fi
tigry1 [53]

Answer:

a

The  radial acceleration is  a_c  = 0.9574 m/s^2

b

The horizontal Tension is  T_x  = 0.3294 i  \ N

The vertical Tension is  T_y  =3.3712 j   \ N

Explanation:

The diagram illustrating this is shown on the first uploaded

From the question we are told that

   The length of the string is  L =  10.7 \ cm  =  0.107 \ m

     The mass of the bob is  m = 0.344 \  kg

     The angle made  by the string is  \theta  =  5.58^o

The centripetal force acting on the bob is mathematically represented as

         F  =  \frac{mv^2}{r}

Now From the diagram we see that this force is equivalent to

     F  =  Tsin \theta where T is the tension on the rope  and v is the linear velocity  

     So

          Tsin \theta  =   \frac{mv^2}{r}

Now the downward normal force acting on the bob is  mathematically represented as

          Tcos \theta = mg

So

       \frac{Tsin \ttheta }{Tcos \theta }  =  \frac{\frac{mv^2}{r} }{mg}

=>    tan \theta  =  \frac{v^2}{rg}

=>   g tan \theta  = \frac{v^2}{r}

The centripetal acceleration which the same as the radial acceleration  of the bob is mathematically represented as

      a_c  =  \frac{v^2}{r}

=>  a_c  = gtan \theta

substituting values

     a_c  =  9.8  *  tan (5.58)

     a_c  = 0.9574 m/s^2

The horizontal component is mathematically represented as

     T_x  = Tsin \theta = ma_c

substituting value

   T_x  = 0.344 *  0.9574

    T_x  = 0.3294 \ N

The vertical component of  tension is  

    T_y  =  T \ cos \theta  = mg

substituting value

     T_ y  =  0.344 * 9.8

      T_ y  = 3.2712 \ N

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is  

         

       T  = T_x i  + T_y  j

substituting value  

      T  = [(0.3294) i  + (3.3712)j ] \  N

         

3 0
3 years ago
Raina is running for student body president and doesn't want to forget her campaign speech. She practices her speech over and ov
mezya [45]

The answer is intentional.

6 0
3 years ago
Read 2 more answers
A person throws a pumpkin at a horizontal speed of 4.0 — off a cliff. The pumpkin travels 9.5 m horizontally
emmainna [20.7K]

Complete Question

A person throws a pumpkin at a horizontal speed of   4.0 m/s off a cliff. The pumpkin travels 9.5m horizontally before it hits the ground. We can ignore air resistance.What is the pumpkin's vertical displacement during the throw? What is the pumpkin's vertical velocity when it hits the ground?

Answer:

The  pumpkin's vertical displacement  is  H = 27 .67 \ m

The  pumpkin's vertical velocity when it hits the ground is  v_v__{f}} = 23.298 \  m/s

Explanation:

From the question we are told that

   The  horizontal speed is  v_h  =  4 m/s

    The horizontal distance traveled is  d =  9.5 \ m

The horizontal distance traveled is mathematically represented as

           S =  v_h * t

Where t is the time taken

substituting values

          9.5 =  4 * t

   =>     t =  \frac{9.5}{4}

            t = 2.38 \ sec

Now the vertical displacement is mathematically represented as

        H  =  v_v t  +  \frac{1}{2} a_v t^2

now the vertical velocity before the throw is  zero

    So

          H =  0 +  \frac{1}{2} (9.8) * (2.375)^2

          H = 27 .67 \ m

Now the final vertical velocity  is mathematically represented as

          v_v__{f}} =  v_v + at

  substituting values

             v_v__{f}} =  0 + (9.8)* (2.375)

            v_v__{f}} = 23.298 \  m/s

7 0
2 years ago
Other questions:
  • How do surface currents affect climate
    11·1 answer
  • A student wants to determine the impulse delivered to the lab cart when it runs into the wall. The student measures the mass of
    7·1 answer
  • Do all protostars become stars?
    5·2 answers
  • A stone is thrown vertically upward with a speed of 18.0 . (a)How fast is it moving when it reaches a height of 11.0 ? (b)How lo
    6·1 answer
  • The seasons on earth are caused by its elliptical orbit around the sun. the seasons on earth are caused by its elliptical orbit
    11·2 answers
  • Un auto recorre una carretera en línea recta de 10km y tarda 8 minutos ¿Cual es su velocidad en km/h?
    14·1 answer
  • Which example is of researcher bias in interpreting data?
    5·1 answer
  • What problem can you imagine coming from using digitized<br> DNA storage?
    11·1 answer
  • Physical therapists know as you soak tired muscles in a hot tub, the water will cool down as you heat up. If a 67.9 kg person at
    7·1 answer
  • If a 50 kg box was accelerated to 10 m/s2, how much force was used?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!