A manufacturer supplies plastic cups that are placed under the legs of the chair. The manufacturer's claim is that there will be no marks of chair due to pushing or pulling on the floor.
<h3>Who is a manufacturer?</h3>
A manufacturer is a person who converts his idea of developing and constructing any item using some set of machines.
A manufacturer supplies plastic cups that are placed under the legs of the chair.
When there is a relative motion between two objects, friction force causes the opposition to this motion. Between chair and floor, there will be high magnitude of force. But if we insert plastic cups in the legs of chair, then the friction between cup and floor will be less. This keeps the floor protected form any scratches.
Learn more about manufacturer.
brainly.com/question/15494518
#SPJ1
As per the question the initial speed of the car [ u] is 42 m/s.
The car applied its brake and comes to rest after 5.5 second.
The final velocity [v] of the car will be zero.
From the equation of kinematics we know that
[ here a stands for acceleration]



Here a is taken negative as it the car is decelerating uniformly.
We are asked to calculate the stopping distance .
From equation of kinematics we know that
[here S is the distance]
![= 42*5.5 +\frac{1}{2} [-7.64] [5.5]^2 m](https://tex.z-dn.net/?f=%3D%2042%2A5.5%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5B-7.64%5D%20%5B5.5%5D%5E2%20m)
[ans]
The answer is "D". This is because wind is very abundant on earth...
Answer:
Balanced forces are equal and opposite forces that act on the same object. ... Action-reaction forces are equal and opposite forces that act on different objects, so they don't cancel out. In fact, they often result in motion.
The average act on her during the deceleration is 4.47 meters per second.
<u>Explanation</u>:
<u>Given</u>:
youngster mass m = 50.0 kg
She steps off a 1.00 m high platform that is s = 1 meter
She comes to rest in the 10-meter second
<u>To Find</u>:
The average force and momentum
<u>Formulas</u>:
p = m * v
F * Δ t = Δ p
vf^2= vi^2+2as
<u>Solution</u>:
a = 9.8 m/s
vi = 0
vf^2= 0+2(9.8)(1)
vf^2 = 19.6
vf = 4.47 m/s .
Therefore the average force is 4.47 m/s.