Answer: Option (b) is the correct answer.
Explanation:
In liquid state, particles do have kinetic energy that helps in partially overcoming the intermolecular forces between the molecules. But still the particles are close together and they are able to slide past each other.
So, when we apply pressure on a liquid then its molecules partially gets compressed.
On the other hand, molecules of a solid are held together by strong intermolecular forces of attraction. Hence, they have definite shape and volume. As a result, solids do not get compressed.
In gases and plasma state of matter, molecules are gar away from each other. So, they are able to get completely compressed when a pressure is applied.
Thus, we can conclude that liquid is the state of matter which consists of particles that can be partially compressed.
All molecular motion stop at 0 k wich is zero kelvin. At absolute 0 it stops. The temperature of 0 entropy at which all molecular motion stops equals in centigrades to -273.15° C which is the same as 0 in kelvin degrees. Have in mind that t<span>emperature is a measure of the average kinetic energy of the </span>molecules<span> in a material.</span>
Answer:
a) Li2CO3
b) NaCLO4
c) Ba(OH)2
d) (NH4)2CO3
e) H2SO4
f) Ca(CH3COO)2
g) Mg3(PO4)2
f) Na2SO3
Explanation:
a) 2Li + CO3 ↔ Li2CO3
b) NaOH * HCLO4 ↔ NaCLO4 + H2O
c) Ba + 2H2O ↔ Ba(OH)2 +
d) 2NH4 + H2CO3 ↔ (NH4)2CO3 + H2O
c) SO2 + NO2 +H2O ↔ H2SO4 + NOx
f) 2CH3COOH + CaO ↔ Ca(CH3COOH)2 + H2O
g) 3MgO + 2H3PO4 ↔ Mg3(PO4)2 + H2O
h) NaOH + H2SO3 ↔ Na2SO3 + H2O
Salutations!
<span>In a laboratory experiment, John uses a mesh to separate soil particles from water. Which technique of separation is he using?
The technique that John is using is the filtration technique. Filtration is a technique to separate the solid which is insoluble from the liquid. For instance: Sand and water, sand is insoluble, thus it stays in the filter paper, while the water proceeds through the filter paper.
Hope I helped :D</span>