Based on the calculation of the resultant of vector forces:
- the resultant force due to the quadriceps is 1795 N
- the resultant force due to the quadriceps is 1975 N. Training and strengthening the vastus medialis results in a greater force of muscle contraction.
<h3>What is the resultant force due to the quadriceps?</h3>
The resultant of more than two vector forces is given by:
where:
- Fₓ is the sum of the horizontal components of the forces
- Fₙ is the sum of the vertical components of the forces
- Fx = F₁cosθ + F₂cosθ + F₃cosθ + F₄cosθ
- Fₙ = F₁sinθ + F₂sinθ + F₃sinθ + F₄sinθ
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 480 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 480 * cos 55
Fx = -280.6 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 480 * sin 55
Fₙ = 1773.1 N
then:
F = √(-280.6)² + ( 1773.1)²
F = 1795.16 N
F ≈ 1795 N
Therefore, the resultant force due to the quadriceps is 1795 N
<h3>What would happen if the vastus medialis was trained and strengthened to contract with 720N of force?</h3>
From the new information provided:
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 720 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 720 * cos 55
Fx = -142.95 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 720 * sin 55
Fₙ = 1969.72 N
then:
F = √(-142.95)² + ( 1969.72)²
F = 1974.9 N
F ≈ 1975 N
Therefore, the resultant force due to the quadriceps is 1975 N.
Training and strengthening the vastus medialis results in a greater force of muscle contraction.
Learn more about resultant of forces at: brainly.com/question/25239010
Answer:
Globular star clusters are located in the great spherical halo.
Explanation:
Hope this helps! :)
Answer: In your right wrist
Explanation:
I believe this is known as wave period.
hope this helps!
Answer:


Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density


Lets take element mass at distance x
dm =λ dx
mass moment of inertia

So total moment of inertia

By putting the values

By integrating above we can find that

Now to find location of center mass


Now by integrating the above


So mass moment of inertia
and location of center of mass 