Answer:
Maintain constant velocity
Answer:
P2 = 352 mm Hg (rounded to three significant figures)
Explanation:
PV = nRT
where P is the pressure,
V is the volume,
n is the moles of gas,
R is the gas constant,
and T is the temperature.
We must relate this equation to a sample of gas at two different volumes however. Looking at the equation, we can relate the change in volume by:
P1V1 = P2V2
where P1 is the initial pressure,
V1 is the initial volume,
P2 is the final pressure,
and V2 is the final volume.
Looking at this relationship, pressure and volume have an indirect relationship; when one goes up, the other goes down. In that case, we can use this equation to solve for the new pressure.
P1V1 = P2V2
(759 mm Hg)(1.04 L) = P2(2.24 L)
P2 = 352 mm Hg (rounded to three significant figures)
The pressure of 2.29 atm can be converted to 
<h3>What is conversation?</h3>
Conversation is a way of writing a value in another unit, it helps to reduce large values by using a unit.
It should be noted that 1 atm. =760.0 mm Hg
We were given 2.29 atm, the we can convert it to mm Hg. as;
![[ 2.29 atm* 760.0 mmHg / atm.]](https://tex.z-dn.net/?f=%5B%202.29%20atm%2A%20760.0%20mmHg%20%2F%20atm.%5D)
= 1740.4 mm Hg.
Therefore, The pressure of 2.29 atm can be converted to 
Learn more about conversation at:
brainly.com/question/5962406
Answer:
4.99 × 10³ g/mol
Explanation:
Step 1: Given and required data
- Mass of the covalent compound (m): 62.4 g
- Volume of the solution (V): 1.000 L
- Osmotic pressure (π): 0.305 atm
- Temperature (T): 25°C = 298 K
Step 2: Calculate the molarity (M) of the solution
The osmotic pressure is a colligative pressure. For a covalent compound, it can be calculated using the following expression.
π = M × R × T
M = π / R × T
M = 0.305 atm / (0.0821 atm.L/mol.K) × 298 K
M = 0.0125 M
Step 3: Calculate the moles of solute (n)
We will use the definition of molarity.
M = n / V
n = M × V
n = 0.0125 mol/L × 1.000 L = 0.0125 mol
Step 4: Calculate the molar mass of the compound
0.0125 moles of the compound weigh 62.4 g. The molar mass is:
62.4 g/0.0125 mol = 4.99 × 10³ g/mol